Endometriosis: MRI navigation and surface reconstruction on manifolds GSI2015

A. Arnould, P.-Y. Gousenbourger, C. Samir, P.-A. Absil, M. Canis

pierre-yves.gousenbourger@uclouvain.be

30 october 2015

What is endometriosis?

Ovaries \bullet Uterosacral ligaments \bullet Colon \bullet vagina \bullet bladder

How to diagnose and cure?

Before surgery location • size • depth

Question 1 : How to merge both techniques? **Question 2 :** How to evaluate the size of the cyst? When endometriosis meets manifolds

Answer 1 : MRI navigation as a path on SE(3)

When endometriosis meets manifolds

Answer 2 :

Endometrial volume reconstruction as path on shape manifold

?

How to interpolate points on manifolds?

How to interpolate?

Each segment between two consecutive points is a **Bézier function**.

Reconstruction : the De Casteljau algorithm

Example on the sphere

It's ugly. Make it **smooth**!

Smooth interpolation with Bézier (in \mathbb{R}^n)

Find the optimal position of control points

 $\mathcal{C}^1\text{-piecewise}$ Bézier interpolation (in $\mathbb{R}^n)$

$$b_i^+ = 2p_i - b_i^-$$

Optimal C^1 -piecewise Bézier interpolation (in \mathbb{R}^n) Minimization of the mean square acceleration of the path

$$\begin{split} & \underset{\alpha_{i}}{\min} \int_{0}^{1} \|\ddot{\beta}_{2}^{0}(b_{1}^{-};t)\|^{2} \mathrm{d}t + \sum_{i=1}^{n-1} \int_{0}^{1} \|\ddot{\beta}_{3}^{i}(b_{i}^{-};t)\|^{2} \mathrm{d}t + \int_{0}^{1} \|\ddot{\beta}_{2}^{n}(b_{n-1}^{-};t)\|^{2} \mathrm{d}t \\ & \underbrace{\min_{\alpha_{i}} \int_{0}^{1} \|\ddot{\beta}_{2}^{0}(b_{1}^{-};t)\|^{2} \mathrm{d}t + \sum_{i=1}^{n-1} \int_{0}^{1} \|\ddot{\beta}_{3}^{i}(b_{i}^{-};t)\|^{2} \mathrm{d}t + \int_{0}^{1} \|\ddot{\beta}_{2}^{n}(b_{n-1}^{-};t)\|^{2} \mathrm{d}t}_{\mathbf{Second order polynomial } P(b_{i}^{-})} \\ & \underbrace{\min_{\alpha_{i}} \int_{0}^{1} \|\ddot{\beta}_{2}^{0}(b_{1}^{-};t)\|^{2} \mathrm{d}t + \sum_{i=1}^{n-1} \int_{0}^{1} \|\ddot{\beta}_{3}^{i}(b_{i}^{-};t)\|^{2} \mathrm{d}t + \int_{0}^{1} \|\ddot{\beta}_{2}^{n}(b_{n-1}^{-};t)\|^{2} \mathrm{d}t}_{\mathbf{Second order polynomial } P(b_{i}^{-})} \end{split}$$

A result on \mathbb{R}^2

Optimal C^1 -piecewise Bézier interpolation (on \mathcal{M})

• The control points are given by :

$$b_i^- = \sum_{j=0}^n D_{i,j} p_j$$

• These points are invariant under translation, *i.e.* :

$$b_i^- - p^{ref} = \sum_{j=0}^n D_{i,j}(p_j - p^{ref})$$

• Transfer to the manifolds setting using the Log as $a - b \Leftrightarrow \text{Log}_b(a)$

$$\operatorname{Log}_{p^{ref}}(b_i^-) = \sum_{j=0}^n D_{i,j} \operatorname{Log}_{p^{ref}}(p_j)$$

Application 1 : MRI navigation

Application 2 : Endometrial volume reconstruction

Conclusions

General C^1 -interpolative method on manifolds... applied in medical imaging.

- It's light;
- It's fast;
- It's general;
- Bézier interpolation can be extended to multidimentional interpolation (surfaces);

Any questions?

Endometriosis: MRI navigation and surface reconstruction on manifolds GSI2015

A. Arnould, P.-Y. Gousenbourger, C. Samir, P.-A. Absil, M. Canis

pierre-yves.gousenbourger@uclouvain.be

30 october 2015