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A medical application




The wind field estimation
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How to interpolate or fit points on M ?
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Bézier curves How to compute

on manifolds ? control points ?




1D : Interpolative Bézier curves

Each segment between two consecutive points is
a Bézier curve of degree K.
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B = B(t —m,b™) with m = |¢] B(t,b) = bBik(t)
=0

[G. et al. 2014, Arnould et al. 2015]



Reconstruction : the De Casteljau algorithm

Ba(bo, by, bo; 1) o Ba(bo, by, ba; 3)
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Example on the sphere
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It’s ugly. Make it smooth!
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Bézier curves How to compute

on manifolds ? control points 7
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Smooth interpolation with Bézier (in R™) : B ()

do

[e]

segment 0 segment 1 segment 2 segment 3 segment 4

ds
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m,b") with m = ||

Each segment is a Bézier curve smoothly connected !
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Smooth interpolation with Bézier (in R™) : B ()

segment 2

da \_/ ds
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B = B(t —m,b™) with m = |¢]

Each segment is a Bézier curve smoothly connected !
Unknowns : 0}".



Smooth interpolation with Bézier (in R") : B()

d \_/ ds

segment 2
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B = B(t —m,b™) with m = |¢]

Minimize the mean square acceleration fé‘/f |B" (t)||dt



How to compute the control points... in R"

In R"

Unique C2-interpolating piecewise-cubic Bézier curve
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second derivative

M
vanishes I?Tinn / 198" (t)|dt
i 0

at the boundaries



From the B-spline to the control points

M+1
B = Z amB(t —m)

[Farin, 2002]

m=—1

Under interpolation constraints,

we find the B-spline coefficients au,,.

B(m) = pm

=

B"(0) = 0
B"(M) =0

PI\/I

O°

\

d;

)



From the B-spline to the control points

m B =B(t—m,b"), m=|t

-2 -1 1 2
The control points b"" are
convex combinations of ay,.
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result on R?

Bezier path

Velocity of the Bezier path

A\

Acceleration of the Bezier path




Optimal Cl-piecewise Bézier interpolation (on M)
m The control points are given by :

3—1

b;m: 3 am+ aerl Zqz,]

m These points are invariant under translation, i.e. :

n
bzn o dreif — Z Qi (d] _ dr‘cf)
i=0

» On manifolds : projection to the tangent space of d"¢/
with the Log, as a — b < Logy(a)

v; = Logrer (b Z i,jLoggres (d )
7=0

m Back to the manifold with the Exp : b = Exp s (v;).
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Bézier curves How to compute

on manifolds ? control points 7
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Results (and bonus?)



Result on the sphere

Velocity of the Bezier path

Bezir path

Acceleration of the Bezler path

e

N

W

N

O

LIS
ZEAONN,
4o
.“ﬂ,—l»‘ =] NS !
T LN
PR
L
985

W

Ty




Result on SO(3)
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In 2D on SO(3)?
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Interpolation with Bézier : pros and cons

v Optimality conditions are a closed form linear system.
v" Method only needs exp and log maps.
v/ The curve is C.
X No guarantee on the optimality when M is not flat.

[G. et al., 2016] [Arnould et al., 2015] [Pyta et al., 2016]

Summary on interpolation

“Differentiable Piecewise-Bézier Surfaces on Riemannian Manifolds”

[Absil, Gousenbourger, Striewski, Wirth, SIAM Journal on Imaging Sciences,
2017].



Any questions ?
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From 1D to 2D ?

Each patch between four neighbour points is
a Bézier surface of degree K.




From 1D to 2D ? (in R")

The surface B is a tensorized version of the curve in step 1.
We use step 1 in direction ¢ then ¢y to obtain the coefficients .
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From 1D to 2D ? (in R")

The control points b are convex combinations of .

f(Poo, Po1, P10, P11)




Result in 2D 7

S = {(t1,t2) : t1 = 1 + cos(3nt2)}



In 2D on SO(3)?
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