Differentiable Bézier interpolation on manifolds with B-splines
 GAMM2017, Weimar

P.-A. Absil, P.-Y. Gousenbourger, P. Striewski, B. Wirth pierre-yves.gousenbourger@uclouvain.be

March 7, 2017

A medical application

The wind field estimation

How to interpolate or fit points on \mathcal{M} ?

1D : Interpolative Bézier curves

Each segment between two consecutive points is a Bézier curve of degree K.

$$
\mathfrak{B}=\boldsymbol{\beta}\left(t-m, \mathbf{b}^{m}\right) \text { with } m=\lfloor t\rfloor
$$

$$
\beta(t, \mathbf{b})=\sum_{i=0}^{K} b_{i} B_{i K}(t)
$$

[G. et al. 2014, Arnould et al. 2015]

Reconstruction : the De Casteljau algorithm

Example on the sphere

It's ugly. Make it smooth !
1.

Bézier curves
on manifolds?

$$
2 .
$$

How to compute
control points?

Smooth interpolation with Bézier (in $\left.\mathbb{R}^{n}\right): \mathfrak{B}(t)$

Each segment is a Bézier curve smoothly connected!

Smooth interpolation with Bézier (in $\left.\mathbb{R}^{n}\right): \mathfrak{B}(t)$

Each segment is a Bézier curve smoothly connected! Unknowns: b_{i}^{m}.

Smooth interpolation with Bézier (in \mathbb{R}^{n}) : $\mathfrak{B}(t)$

Minimize the mean square acceleration $\int_{0}^{M}\left\|\mathfrak{B}^{\prime \prime}(t)\right\| \mathrm{d} t$

How to compute the control points... in \mathbb{R}^{n}

In \mathbb{R}^{n}

Unique \mathcal{C}^{2}-interpolating piecewise-cubic Bézier curve

second derivative vanishes
at the boundaries

$$
\min _{b_{i}^{m}} \int_{0}^{M}\left\|\mathfrak{B}^{\prime \prime}(t)\right\| \mathrm{d} t
$$

From the B-spline to the control points

$$
\mathfrak{B}:=\sum_{m=-1}^{M+1} \alpha_{m} \mathbf{B}(t-m)
$$

Under interpolation constraints, we find the B-spline coefficients α_{m}.

From the B-spline to the control points

$$
\mathfrak{B}=\boldsymbol{\beta}\left(t-m, \mathrm{~b}^{m}\right), \quad m=\lfloor t\rfloor
$$

The control points \mathbf{b}^{m} are convex combinations of α_{m}.

A result on \mathbb{R}^{2}

Acceleration of the Bezier path

Optimal \mathcal{C}^{1}-piecewise Bézier interpolation (on \mathcal{M})

- The control points are given by :

$$
b_{i}^{m}=\frac{3-i}{3} \alpha_{m}+\frac{i}{3} \alpha_{m+1}=\sum_{j=0}^{n} q_{i, j} d_{j}
$$

- These points are invariant under translation, i.e. :

$$
b_{i}^{m}-d^{r e f}=\sum_{j=0}^{n} q_{i, j}\left(d_{j}-d^{r e f}\right)
$$

- On manifolds : projection to the tangent space of $d^{r e f}$ with the $\mathbf{L o g}$, as $a-b \Leftrightarrow \log _{b}(a)$

$$
v_{i}=\log _{d^{r e f}}\left(b_{i}^{m}\right)=\sum_{j=0}^{n} q_{i, j} \log _{d^{r e f}}\left(d_{j}\right)
$$

$■$ Back to the manifold with the $\operatorname{Exp}: b_{i}^{m}=\operatorname{Exp}_{d^{r e f}}\left(v_{i}\right)$.

Bézier curves
on manifolds?

2.

How to compute control points?

Results (and bonus?)

Result on the sphere

Velocity of the Bezier path

Acceleration of the Bezier path

Result on $\mathrm{SO}(3)$

In 2 D on $\mathrm{SO}(3)$ ？

物㷅童会会物皆些電

Interpolation with Bézier : pros and cons

\checkmark Optimality conditions are a closed form linear system.
\checkmark Method only needs exp and log maps.
\checkmark The curve is \mathcal{C}^{1}.
x No guarantee on the optimality when \mathcal{M} is not flat.
[G. et al., 2016]
[Arnould et al., 2015]
[Pyta et al., 2016]

Summary on interpolation
"Differentiable Piecewise-Bézier Surfaces on Riemannian Manifolds" [Absil, Gousenbourger, Striewski, Wirth, SIAM Journal on Imaging Sciences, 2017].

Any questions?

Differentiable Bézier interpolation on manifolds with B-splines

GAMM2017, Weimar

P.-A. Absil, P.-Y. Gousenbourger, P. Striewski, B. Wirth pierre-yves.gousenbourger@uclouvain.be

March 7, 2017

From 1D to 2 D ?

Each patch between four neighbour points is a Bézier surface of degree K.

$\mathfrak{B}\left(t_{1}, t_{2}\right)=\beta\left(t_{1}-m_{1}, t_{2}-m_{2}, \mathbf{b}\right)$, with $m_{1}=\left\lfloor t_{1}\right\rfloor$ and $m_{2}=\left\lfloor t_{2}\right\rfloor$

From 1D to 2 D ? (in $\left.\mathbb{R}^{n}\right)$

The surface \mathfrak{B} is a tensorized version of the curve in step 1 . We use step 1 in direction t_{1} then t_{2} to obtain the coefficients $\alpha_{m n}$.

From 1 D to $2 \mathrm{D} ?\left(\right.$ in $\left.\mathbb{R}^{n}\right)$

The control points b are convex combinations of $\alpha_{m n}$.

$$
f\left(p_{00}, p_{01}, p_{10}, p_{11}\right)
$$

$$
f\left(p_{i, n-1}, p_{i, n}\right)
$$

α

Result in 2D?

$$
S=\left\{\left(t_{1}, t_{2}\right): t_{1}=1+\cos \left(3 \pi t_{2}\right)\right\}
$$

In 2 D on $\mathrm{SO}(3)$ ？

－物 年 早物等点良会
由（1）
 ＊由电 4（ ）

