Curve fitting on manifolds with Bézier and blended curves

Pierre-Yves Gousenbourger
pierre-yves.gousenbourger@uclouvain.be

Université catholique de Louvain
TU Chemnitz - July 18, 2018

What is the problem?

Find a \mathcal{C}^{1} curve $\mathbf{B}(t)$, s.t.

Data points $d_{i} \in \mathbb{R}^{2}$ curve $\mathrm{B}:[0, n] \rightarrow \mathbb{R}^{2}$

Why is this important? - Sphere

storm trajectories birds migrations distress planes roadmaps extrapolation

Data points $d_{i} \in \mathbb{S}^{2}$ curve $\mathrm{B}:[0, n] \rightarrow \mathbb{S}^{2}$

Why is this important? - Orthogonal group

Rigid rotations of 3D objects
3D printing plannings
Computer vision, video games
Data points $d_{i} \in \operatorname{SO}(3)$
curve $\mathrm{B}:[0, n] \rightarrow \mathrm{SO}(3)$

Why is this important? - SDP matrices of size p,rank r

Wind field estimation for UAV

Data points $d_{i} \in \mathcal{S}_{+}(p, r)$
curve $\mathrm{B}:[0, n] \rightarrow \mathcal{S}_{+}(p, r)$

Why is this important? - Shape space

medical imaging, harmed soldiers rehab'
Data points $d_{i} \in \mathcal{S}$ curve $\mathrm{B}:[0, n] \rightarrow \mathcal{S}$

What they have in common

$\mathbb{S}^{2}, \mathrm{SO}(3), \mathcal{S}_{+}(p, r), \mathcal{S}_{,} \ldots$ are Riemannian manifolds.

Fast - low complexity - meaningful - easy to use

What is a manifold?

The sphere as an example

The curse of the curvature: the cut locus

$\mathbf{B}(t)$ is a piecewise cubic Bézier curve

Each segment is a Bézier curve smoothly connected!
Unknowns: $b_{i}^{+}, b_{i}^{-}, p_{i}$.

Why Bézier? - De Casteljau Algorithm generalizes well

How to compute the control points?

in \mathbb{R}^{d}

Unique \mathcal{C}^{2} smoothing polynomial spline

$$
\text { s.t. } \min _{b_{i}^{m}} \int_{0}^{M}\left\|\mathbf{B}^{\prime \prime}(t)\right\| \mathrm{d} t
$$

(Long story short)

$$
b_{i}^{m}=\sum_{j=0}^{n} q_{i, j} d_{j}
$$

Generalization to \mathcal{M}

in \mathcal{M} ?

1. Invariance to translation to a point $d_{\text {ref }}$.
2. Translation to $d_{\text {ref }}$ is a Riemannian \log on \mathbb{R}^{r}.
3. Exponentiall map to go back to \mathcal{M}.
4. Compute p_{i} with the manifold-valued \mathcal{C}^{1} condition.

$$
\begin{aligned}
& j \neq 00
\end{aligned}
$$

Generalization to \mathcal{M} - illustration

A drawing is worth 10 explanations... ;-)

Results show that it works... $\left(\mathbb{S}^{2}\right)$

Results show that it works... (SO(3))

... but it actually fails sometimes $\left(\mathcal{S}_{+}(p, r)\right)$

... but it actually fails sometimes $\left(\mathbb{S}^{1}\right)$

So what's wrong?

The failure revealed! $\left(\mathbb{S}^{1}\right)$

What solutions?

A drawing is worth 10 explanations...

The Cubic Blended Splines Algorithm

is a weighted geodesic averaging of L_{i} and R_{i}
with a weight $w(t)=3 t^{2}-2 t^{3}$

Results: all is well!

Angle of the Bézier-like curve on \mathbb{S}^{1}

Interpolation error on the wind field data

Properties and take-home message

$1 \mathrm{~B}\left(t_{i}\right)=d_{i}$ when $\lambda \rightarrow \infty$;
$2 \mathbf{B}(t)$ is $\mathcal{C}^{1} ;\left(\beta_{i}(t)=\operatorname{av}\left[\left(L_{i}, R_{i}\right),(1-w(t), w(t))\right]\right)$
${ }^{3} \mathbf{B}(t)$ is the natural smoothing spline when $\mathcal{M}=\mathbb{R}^{r}$
$4 \mathrm{~B}\left(t_{i}\right)=d_{i}$ when $\lambda \rightarrow \infty$;
$5 \mathrm{~B}(t)$ is \mathcal{C}^{1};
6 $\mathbf{B}(t)$ is the natural smoothing spline when $\mathcal{M}=\mathbb{R}^{r}$

Limitations

The objective was., for $\left\{d_{i}\right\}_{i=0}^{n} \in \mathcal{M}$..

Are the 6 properties always true? The cut locus is still a curse.
Is it far from the optimal B?

- Yes if the points are spread out!

■ No otherwise.

Future work

Is it far from the optimal B?
■ Ongoing work with R.Bergmann

- No theoretical bound yet.

Generalization to 2D, 3D, is open.

Application to real data is awaiting.

This is the end of the talk :-)

Curve fitting on manifolds with Bezier and blended curve

P.Y.G, E. Massart, P.-A. Absil, Data fitting on manifolds with composite Bézier-like curves and blended cubic splines, JMIV (MIA2018) - under review.

