Curve fitting on manifolds with Bézier and blended curves

Pierre-Yves Gousenbourger pierre-yves.gousenbourger@uclouvain.be

Université catholique de Louvain

TU Chemnitz - July 18, 2018

What is the problem?

curve **B** : $[0, n] \rightarrow \mathbb{R}^2$

Why is this important? - Sphere

storm trajectories birds migrations distress planes roadmaps extrapolation

curve **B** :
$$[0, n] \rightarrow \mathbb{S}^2$$

Data points $d_i \in \mathbb{S}^2$

Why is this important? - Orthogonal group

Rigid rotations of 3D objects 3D printing plannings Computer vision, video games

curve **B** : $[0, n] \rightarrow SO(3)$

Why is this important? - SDP matrices of size p, rank r

Wind field estimation for UAV

Data points $d_i \in S_+(p, r)$

curve **B** : $[0, n] \rightarrow S_+(p, r)$

Why is this important? - Shape space

medical imaging, harmed soldiers rehab'

Data points $d_i \in S$

curve $\mathbf{B}: [0, n] \rightarrow \mathcal{S}$

What they have in common

 \mathbb{S}^2 , SO(3), $\mathcal{S}_+(p, r)$, \mathcal{S}_+ ... are Riemannian manifolds.

Fast • low complexity • meaningful • easy to use

What is a manifold?

The sphere as an example

The curse of the curvature: the cut locus

$\mathbf{B}(t)$ is a piecewise cubic Bézier curve

Each segment is a Bézier curve smoothly connected! Unknowns: b_i^+ , b_i^- , p_i .

Why Bézier? - De Casteljau Algorithm generalizes well

How to compute the control points?

in
$$\mathbb{R}^d$$

Unique C^2 smoothing polynomial spline s.t. $\min_{b_i^m} \int_0^M \|\mathbf{B}''(t)\| dt$ (Long story short) $b_i^m = \sum_{j=0}^n q_{i,j} d_j$

Generalization to $\ensuremath{\mathcal{M}}$

in \mathcal{M} ?

- 1. Invariance to translation to a point d_{ref} .
- 2. Translation to d_{ref} is a Riemannian Log on \mathbb{R}^r .
 - 3. Exponentiall map to go back to \mathcal{M} .
- 4. Compute p_i with the manifold-valued C^1 condition.

A drawing is worth 10 explanations... ;-)

Results show that it works... (\mathbb{S}^2)

Results show that it works... (SO(3))

... but it actually fails sometimes $(\mathcal{S}_+(p, r))$

... but it actually fails sometimes (\mathbb{S}^1)

So what's wrong?

The failure revealed! (\mathbb{S}^1)

A drawing is worth 10 explanations...

The Cubic Blended Splines Algorithm

Properties and take-home message

Limitations

Are the 6 properties always true? The cut locus is still a curse.

- Is it far from the optimal B?
 - Yes if the points are spread out!
 - No otherwise.

- Is it far from the optimal B?
 - Ongoing work with R.Bergmann
 - No theoretical bound yet.

Generalization to 2D, 3D, is open.

Application to real data is awaiting.

This is the end of the talk :-)

Curve fitting on manifolds with Bezier and blended curve

P.Y.G, E. Massart, P.-A. Absil, **Data fitting on manifolds with** composite Bézier-like curves and blended cubic splines, JMIV (MIA2018) - under review.