

$$
\mathrm{SO}(3) \times \text { Sphere }
$$

What's a manifold?

What's a manifold?

Hopefully, the tangent space at x is Euclidean

Manifolds.

Interpolation.

Interpolation on $\mathcal{M}=\mathbb{R}^{n}$

■ Lagrange polynomials

- Cubic splines
- Bernstein
- curve fitting
- ... and many more (ask V.Legat).

Interpolation on $\mathcal{M}=\mathbb{R}^{n}$

- Runge phenomenon
- Extrapolation error

■ How to solve? Piecewise curves!

How to interpolate?

Each segment between two consecutive points is a Bézier function.

Reconstruction: the De Casteljau algorithm

How to generalize to manifolds?

(

Geodesics are straight lines

I'm a straight line!

Exponential maps computes geodesics

I compute the straight line!

Logarithmic maps are in the tangent space

I'm in the tangent space!
(And I'm the velocity needed to compute the straight line!)
)

Example on the sphere

It's ugly. Make it smooth!

\mathcal{C}^{1}-piecewise Bézier interpolation (in \mathbb{R}^{n})

Manifolds.

Interpolation.

Results?

A result on \mathbb{R}^{2}

A result on the sphere

Norm of the acceleration

A result on $\mathrm{SO}(3)$

Norm of the acceleration

Satellite moving

Morphing...

500000000000B

Norm of the acceleration

Smooth Bézier path Piecewise geodesic (ugly) path

2D

A result on \mathbb{R}^{2}

A result on $\mathrm{SO}(3)$

A result on the space of triangulated shells (just because the result is cool)

Any questions?

Bézier interpolation on Riemannian manifolds

ASCII's tutorial seminar

P.-Y. Gousenbourger

pierre-yves.gousenbourger@uclouvain.be
27.11.2015

Application 1: MRI navigation

Application 2: Endometrial volume reconstruction

Optimal \mathcal{C}^{1}-piecewise Bézier interpolation (in \mathbb{R}^{n})

Minimization of the mean square acceleration of the path

$$
\underbrace{\min _{b_{i}^{-}} \int_{0}^{1}\left\|\ddot{\beta}_{2}^{0}\left(b_{1}^{-} ; t\right)\right\|^{2} \mathrm{~d} t+\sum_{i=1}^{n-1} \int_{0}^{1}\left\|\ddot{\beta}_{3}^{i}\left(b_{i}^{-} ; t\right)\right\|^{2} \mathrm{~d} t+\int_{0}^{1}\left\|\ddot{\beta}_{2}^{n}\left(b_{n-1}^{-} ; t\right)\right\|^{2} \mathrm{~d} t}_{\text {Second order polynomial } P\left(b_{i}^{-}\right)}
$$

$$
\nabla P\left(b_{i}^{-}\right)!
$$

Optimal \mathcal{C}^{1}-piecewise Bézier interpolation (in \mathbb{R}^{n})

Minimization of the mean square acceleration of the path

$$
\underbrace{\min _{b_{i}^{-}} \int_{0}^{1}\left\|\ddot{\beta}_{2}^{0}\left(b_{1}^{-} ; t\right)\right\|^{2} \mathrm{~d} t+\sum_{i=1}^{n-1} \int_{0}^{1}\left\|\ddot{\beta}_{3}^{i}\left(b_{i}^{-} ; t\right)\right\|^{2} \mathrm{~d} t+\int_{0}^{1}\left\|\ddot{\beta}_{2}^{n}\left(b_{n-1}^{-} ; t\right)\right\|^{2} \mathrm{~d} t}_{\text {Second order polynomial } P\left(b_{i}^{-}\right)}
$$

Optimal \mathcal{C}^{1}-piecewise Bézier interpolation (on \mathcal{M})

■ The control points are given by:

$$
b_{i}^{-}=\sum_{j=0}^{n} D_{i, j} p_{j}
$$

■ These points are invariant under translation, i.e.:

$$
b_{i}^{-}-p^{r e f}=\sum_{j=0}^{n} D_{i, j}\left(p_{j}-p^{r e f}\right)
$$

■ Transfer to the manifolds setting using the Log as $a-b \Leftrightarrow \log _{b}(a)$

$$
\log _{p^{r e f}}\left(b_{i}^{-}\right)=\sum_{j=0}^{n} D_{i, j} \log _{p^{r e f}}\left(p_{j}\right)
$$

