

July 22 - August 10 2013

$SO(3) \times Sphere$

What's a manifold?

What's a manifold?

Hopefully, the tangent space at x is Euclidean

Manifolds. <

Interpolation.

Interpolation on $\mathcal{M} = \mathbb{R}^n$

- Lagrange polynomials
- Cubic splines
- Bernstein
- curve fitting
- ... and many more (ask V.Legat).

Interpolation on $\mathcal{M} = \mathbb{R}^n$

- Runge phenomenon
- Extrapolation error
- How to solve?
 Piecewise curves!

How to interpolate?

Each segment between two consecutive points is a **Bézier function**.

Reconstruction: the De Casteljau algorithm

How to generalize to manifolds?

Geodesics are straight lines

I'm a straight line!

Exponential maps computes geodesics

I compute the straight line!

Logarithmic maps are in the tangent space

I'm in the tangent space! (And I'm the velocity needed to compute the straight line!)

Example on the sphere

It's ugly. Make it **smooth**!

 $\mathcal{C}^1\text{-}\mathrm{piecewise}$ Bézier interpolation (in $\mathbb{R}^n)$

$$b_i^- = p_i - v_i \quad \text{and} \quad b_i^+ = p_i + v_i$$

$$b_i^- = \operatorname{Exp}_{p_i}(-v_i) \quad \text{and} \quad b_i^+ = \operatorname{Exp}_{p_i}(+v_i)$$

Manifolds. V Interpolation. V Results?

A result on \mathbb{R}^2

A result on the sphere

A result on SO(3)

Satellite moving

566666660000BB

Smooth Bézier path Piecewise geodesic (ugly) path

D

A result on \mathbb{R}^2

A result on SO(3)

A result on the space of triangulated shells (just because the result is cool)

Any questions?

Bézier interpolation on Riemannian manifolds

ASCII's tutorial seminar

P.-Y. Gousenbourger

pierre-yves.gousenbourger@uclouvain.be

27.11.2015

Application 1: MRI navigation

Application 2: Endometrial volume reconstruction

Optimal C^1 -piecewise Bézier interpolation (in \mathbb{R}^n) Minimization of the mean square acceleration of the path

$$\underbrace{\min_{b_i^-} \int_0^1 \|\ddot{\beta}_2^0(b_1^-;t)\|^2 \mathrm{d}t + \sum_{i=1}^{n-1} \int_0^1 \|\ddot{\beta}_3^i(b_i^-;t)\|^2 \mathrm{d}t + \int_0^1 \|\ddot{\beta}_2^n(b_{n-1}^-;t)\|^2 \mathrm{d}t }_{\text{Second order polynomial } P(b_i^-)} \underbrace{\nabla P(b_i^-) ! }_{\text{V}}$$

Optimal C^1 -piecewise Bézier interpolation (in \mathbb{R}^n) Minimization of the mean square acceleration of the path

Optimal C^1 -piecewise Bézier interpolation (on \mathcal{M})

• The control points are given by:

$$b_i^- = \sum_{j=0}^n D_{i,j} p_j$$

• These points are invariant under translation, *i.e.*:

$$b_i^- - p^{ref} = \sum_{j=0}^n D_{i,j}(p_j - p^{ref})$$

• Transfer to the manifolds setting using the Log as $a - b \Leftrightarrow \text{Log}_b(a)$

$$\operatorname{Log}_{p^{ref}}(b_i^-) = \sum_{j=0}^n D_{i,j} \operatorname{Log}_{p^{ref}}(p_j)$$