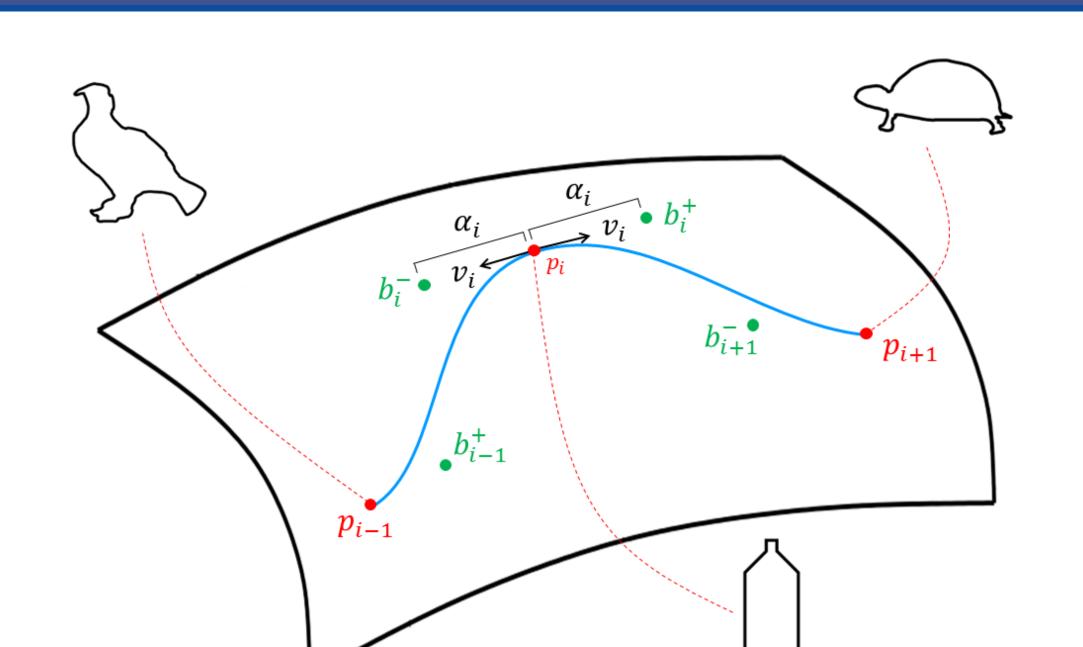
Piecewise-Bézier C¹ interpolation on Riemannian manifolds with application to 2D shape morphing Pierre-Yves Gousenbourger¹, Chafik Samir², Pierre-Antoine Absil¹

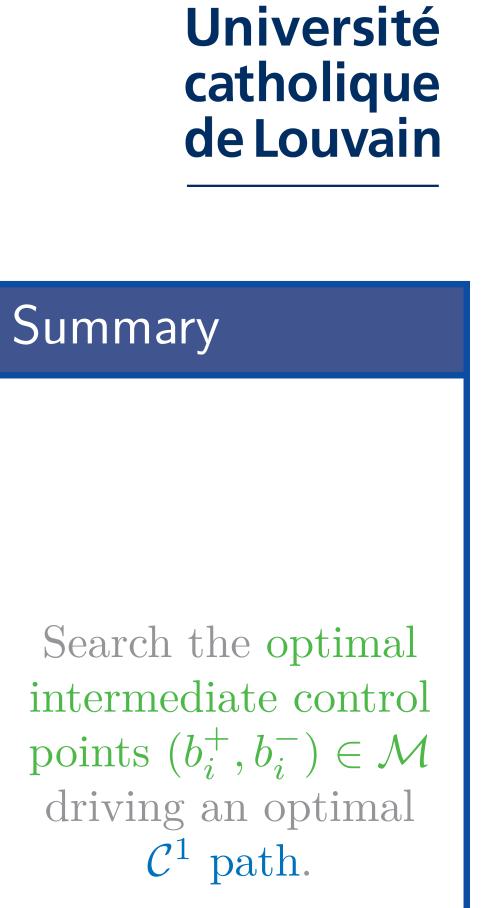
¹ICTEAM Institute (Université catholique de Louvain, Belgium), ²ISIT (Université de Clermont, France)

Context

We propose a new framework to

- fit n + 1 data points $(p_i)_{0 \le i \le n}$ on a manifold \mathcal{M} ;
- given n-1 velocity directions at internal data points $(v_i)_{1 \le i \le n-1}$ on the tangent space in p_i (noted $T_{p_i}\mathcal{M}$);
- with *n* Bézier functions $(\beta_i^k)_{0 \le i \le n-1} : [0,1] \to \mathcal{M}$
 - degree k = 2: segments from p_0 to p_1 and from p_{n-1} to p_n
 - degree k = 3: other segments.





UCL

The Bézier path is driven by its intermediate control points (b_i^-, b_i^+) . We ensure low space and time complexity.

Method on the Euclidean space

Optimize the norms $\alpha_i \geq 0$ of the velocity directions, which are independent of the manifold \mathcal{M} .

Constraint: the path is smooth at data points $\Rightarrow b_i^{\pm} = p_i \pm \alpha_i v_i$.

$$\beta_k: \text{ Bézier segment driven by } p_{n-1}, b_{n-1}^+ \text{ and } p_n$$

$$\min_{\alpha_1, \dots, \alpha_{n-1}} \int_0^1 \|\ddot{\beta}_2(t; p_0, b_1^-, p_1)\|^2 dt + \sum_{i=1}^{n-2} \int_0^1 \|\ddot{\beta}_3(t; p_{i-1}, b_{i-1}^+, b_i^-, p_i)\|^2 dt + \int_0^1 \|\ddot{\beta}_2(t; p_{n-1}, b_{n-1}^+, p_n)\|^2 dt,$$

$$b_1^- = p_1 - \alpha_1 v_1$$

$$b_{i-1}^+ = p_{i-1} + \alpha_{i-1} v_{i-1}$$

Quadratic polynomial $P(\alpha_i)$

Solution on the Euclidean space

On \mathbb{R}^m , $\nabla P(\alpha_i) = 0 \Rightarrow$ tridiagonal linear system with unknowns α_i .

Generalization to manifold

The tridiagonal system is generalized to mani-

Manifolds

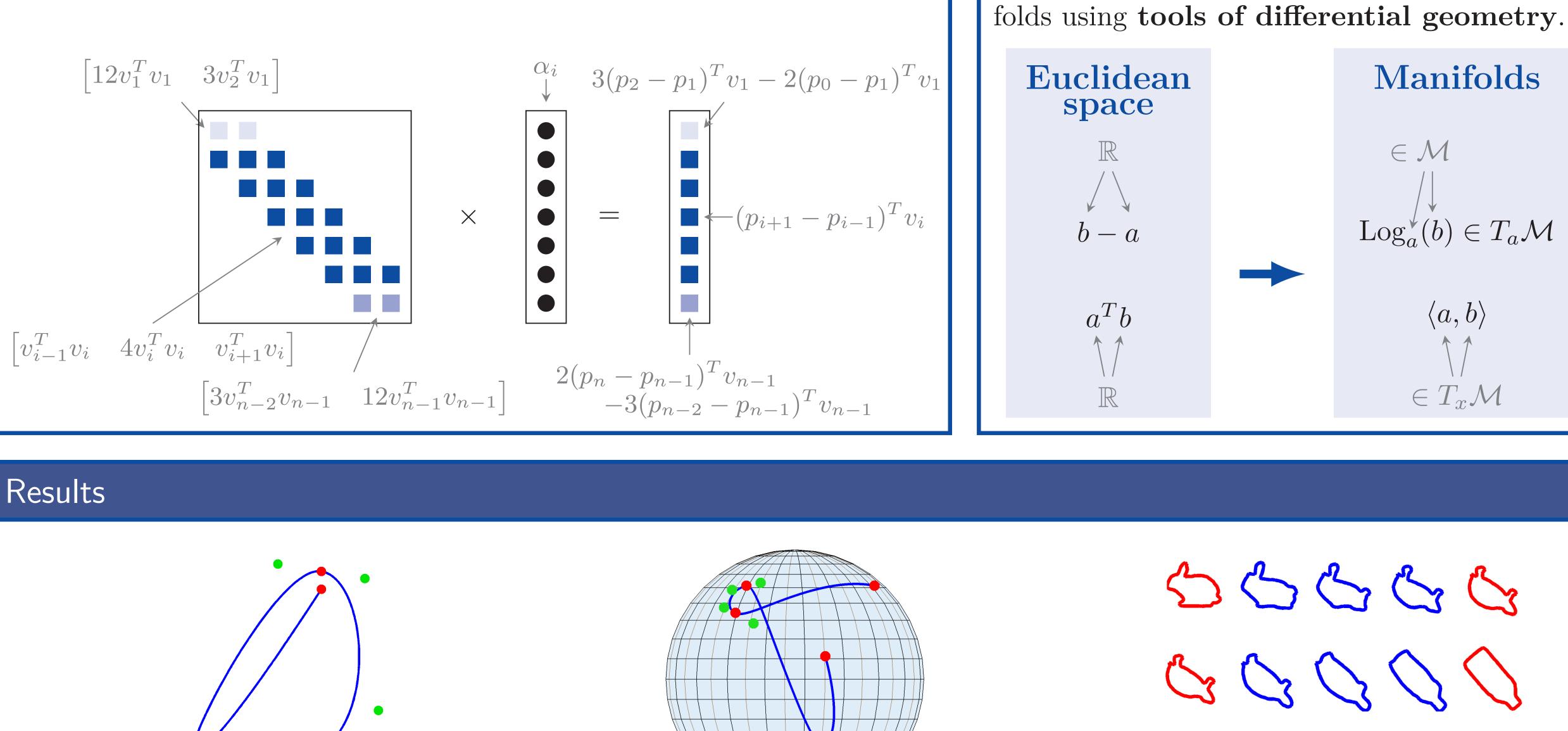
 $\operatorname{Log}_a^{\checkmark}(b) \in T_a\mathcal{M}$

 $\langle a, b \rangle$

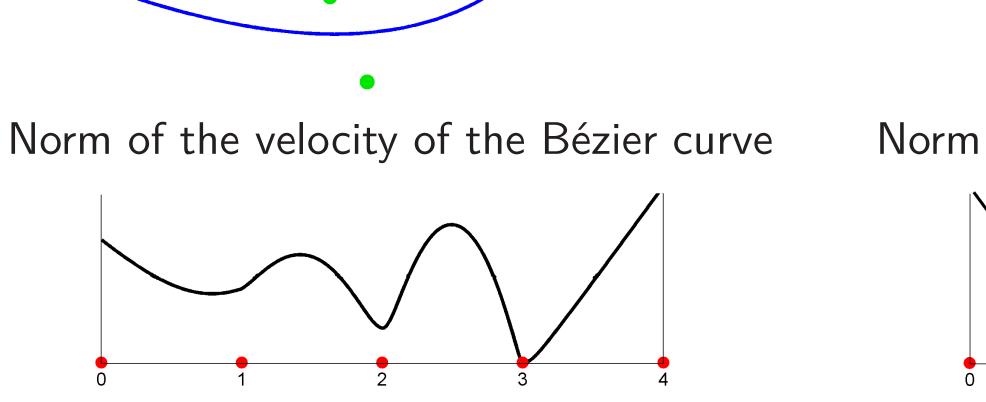
 $\in T_x\mathcal{M}$

 $\in \mathcal{M}$

$egin{array}{llllllllllllllllllllllllllllllllllll$
On the Euclidean space, minimize the mean square acceleration $P(\alpha_i)$ of the path.
$\nabla P(\alpha_i) = 0$

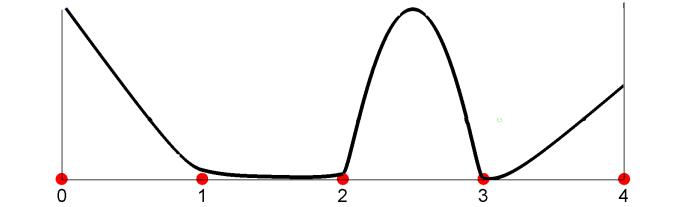


Solve a tridiagonal system in α_i Manifold adaptation the entries become: $a^T b \rightarrow \langle a, b \rangle$ $b - a \rightarrow \operatorname{Log}_{a}(b)$ $a + vt \rightarrow \operatorname{Exp}_a(vt)$ Compute back the intermediate control points: $b_i^{\pm} = \operatorname{Exp}_{p_i}(\pm \alpha_i v_i)$



The optimization on a linear finite dimensional manifold produces a smooth path, as expected.

Norm of the velocity of the Bézier curve



The generalization to a non-linear finite dimensional manifold leads to a smooth path.

The generalization to a more general manifold leads to visually satisfying results.

 $\wedge \wedge \wedge \wedge$

Norm of the velocity of the Bézier curve

Reconstruct the path with the DeCasteljau algorithm generalized \mathcal{M} to with geodesics.