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Abstract
We propose several methods that address the problem of fitting a C1 curve γ to time-labeled data points on a manifold. The
methods have a parameter, λ, to adjust the relative importance of the two goals that the curve should meet: being “straight
enough” while fitting the data “closely enough.” The methods are designed for ease of use: they only require to compute
Riemannian exponentials and logarithms, they represent the curve bymeans of a number of tangent vectors that grows linearly
with the number of data points, and, once the representation is computed, evaluating γ (t) at any t requires a small number
of exponentials and logarithms (independent of the number of data points). Among the proposed methods, the blended cubic
spline technique combines the additional properties of interpolating the data when λ → ∞ and reducing to the well-known
cubic smoothing spline when the manifold is Euclidean. The methods are illustrated on synthetic and real data.
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1 Introduction

This paper concerns the problem of fitting a curve to data
points on a manifold: we are given data points d0, . . . , dn on
a Riemannian manifold M as well as times t0 < · · · < tn ,
and we seek a curve γ : [t0, tn] → M that strikes a balance
between the conflicting goals of being “sufficiently straight”
while passing “sufficiently close” to the data points at the
given times. These intuitively formulated goals will be made
precise momentarily.
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1.1 Motivation

The data fitting problem is motivated by various applications
that require to denoise or resample time-dependent—ormore
generally parameter-dependent—data on aRiemannianman-
ifold.

For example, a crucial task in computational anatomy is
to denoise and resample the evolution of the shape of an
organ, yielding a curve fitting problem on a shape manifold.
In Arnould et al. [3], for instance, different images of an
organ are acquired in the space of closed 2D shapes S at dif-
ferent body depths, via MRI. Orientations of a probe are also
registered at different times by 2D transvaginal ultrasound
(TVUS) [4]. The final goal is to reconstruct the 3D volume
γMRI(z) : z → S of the imaged organ, where z is the depth
inside the human body, but also the probe navigation path
γTVUS(t) : t → SE(3).

Another application concerns interpolation or fitting of
rotations of 3D objects lying on the special orthogonal group
SO(3). This problem arises in robotics (for motion plan-
ning of rigid bodies) or in computer graphics, to animate
3D objects [27].

In projection-based model reduction of dynamical sys-
tems depending on one parameter, the computation of a
suitable projector for a given value of the parameter requires
usually a high computational effort. In Pyta et al. [30], the
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parameter is the Reynolds number and the dynamical sys-
tem is the Navier–Stokes equations. Several projectors (i.e.,
elements of a Grassmann manifold) are computed with a
Galerkin method for a small set of parameter values, and
then curve fitting is used to approximate a new projector for
other values of the Reynolds number.

We finally mention diffusion tensor imaging, where data
points are elements of the manifold of 3 × 3 symmetric
positive definite matrices [28], or the wind field modeling
problem, where a wind field is characterized by a mean field
and a covariance matrix C in the manifold S+(p, r) of pos-
itive semidefinite matrices of size p and rank r [13].

1.2 State of the Art

A well-known strategy to handle the two conflicting goals
(i.e., data fitting and smoothness) is to encapsulate them in
an optimization problem

min
γ∈Γ

Eλ(γ ) :=
∫ tn

t0

∥∥∥∥D
2γ (t)

dt2

∥∥∥∥
2

γ (t)
dt + λ

n∑
i=0

d2(γ (ti ), di ),

(1)

where the set Γ is an admissible set of curves on M,
D2

dt2
denotes the (Levi-Civita) second covariant derivative,

‖ · ‖γ (t) is the Riemannian metric at γ (t), and d(·, ·)
is the Riemannian distance. The parameter λ (controlled
by the user or by the algorithm itself, e.g., through a
cross-validation procedure) sets the balance between the

regularizer term
∫ tn
t0

‖D2γ (t)
dt2

‖2γ (t)dt and the goodness of fit

term
∑n

i=0 d
2(γ (ti ), di ). When the Riemannian manifold

M reduces to a Euclidean space and Γ is chosen to be the
Sobolev space H2(t0, tn), a classical result (see, e.g., [14,
Theorem 2.4]) states that the solution of (1) is a natural cubic
spline. Specifically, it is the interpolating natural cubic spline
when λ → ∞ (see, e.g., [35] for its definition) and the least-
squares linear regression as λ → 0 (see [22, Proposition 4.5
and 4.6] for a result on manifolds).

Severalmethods exist to tackle problem (1) in general, and
also more specifically in an imaging context. For instance,
in Samir et al. [32], the problem is addressed in an infinite-
dimensional Sobolev space equipped with the Palais metric,
and (1) is minimized with a steepest-descent approach; that
approach was applied to image processing by Su et al. [34].
In Boumal et al. [6], the curve is discretized with K points,
reducing the search space to a (simpler) product manifold
MK , and the covariant derivative is replaced by manifold-
valued finite differences. Machado andMonteiro [23] handle
the specific case of the sphere. More recently, Kim et al. [19]
generalized to the shape space a technique from Jupp and
Kent [17] called “unwrapping and unrolling”; this technique
has the advantage to “transform” the manifold-valued prob-

lem to an equivalent Euclidean problem and solve it with
classical Euclidean techniques.

The limit case where λ = 0, i.e., geodesic regression, was
studied in the work of Rentmeesters [31] and Fletcher [12].
In the former, the problem is solved with a gradient descent
technique for Riemannian symmetric spaces, while in the
latter, the least-squares problem is studied intrinsically as
a minimization of the sum of squared geodesic distances
on M. An extension of geodesic regression is polynomial
regression, for which Riemannian techniques were proposed
by Hinkle et al. [15] (intrinsic method) and Lin et al. [21]
(extrinsic methods).

We also mention the other limit case where λ → ∞, stud-
ied by Arnould et al. [3] and Absil et al. [1]. In that work,
the search space Γ is chosen to be a space of C1 compos-
ite Bézier curves (resp. surfaces), and the optimality of the
returned curve is guaranteed only when M is Euclidean.
The advantage compared to [6,32] is that the search space
is less complex, as the curves are only represented by a few
control points on the manifold. Furthermore, an advantage
compared to [12,19,31,32] consists in the simplicity of the
proposed method. Indeed, only two objects on the manifold
are required: the exponential map and the logarithm, while
most of the techniques mentioned above require a gradient or
heavy computations for parallel transportation. Worth men-
tioning is also the work of Modin et al. [25] on interpolation
withC2 composite cubic Bézier curves on Riemannian sym-
metric spaces, and the extension to bivariate interpolation
in [1].

Finally, note that several curve fitting methods on man-
ifolds do not fit the optimization framework (1), such as
subdivision schemes [10,37] or Lie-algebraic methods [33].

1.3 Our Contribution

In this paper, our purpose is to extend the C1 composite
Bézier curve interpolation method of [1,3] to a curve fitting
method, where the data points do not need to be interpolated
exactly (i.e., λ ∈ (0,∞)). Among the several techniques
developed in this paper, the “blended cubic spline” (see
Sect. 5) stands out as it combines the following desirable
properties:

(i) As λ → ∞, the data points are interpolated at the given
times;

(ii) The curve is of class C1;
(iii) If the manifold M reduces to a Euclidean space, then

the produced curve is the natural cubic spline that
minimizes the energy function (1) over the (infinite-
dimensional) Sobolev space H2(t0, tn);

(iv) The only knowledge that the method requires from the
manifold is theRiemannian exponential (a function that
solves the initial-value geodesic problem) and the Rie-
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mannian logarithm (a function that solves the endpoint
geodesic problem);

(v) The produced curve is represented byO(n) tangent vec-
tors to the manifold (or simply points on the manifold);

(vi) Computing γ (t) for any given t requiresO(1) exp and
log operations once the representation byO(n) tangent
vectors is available.

In a nutshell, the proposed blended cubic spline method con-
sists in building polynomial pieces by solving the optimiza-
tion problem (1) in various tangent spaces and then blending
together corresponding pieces by means of carefully chosen
weights in order to satisfy all the above-mentioned proper-
ties.

Throughout the paper, we assume that the fitting prob-
lem instance (i.e., the data points and associated times) is
such that the considered algorithm evaluates the Riemannian
exponentials and logarithms onlywhere they arewell defined
(so that the resulting curve is well defined as well) and C1

(so that property (ii) holds). This standing assumption always
holds whenM is a Hadamard manifold, and is in general not
a concern when M is complete and the cut loci on M have
codimension greater than one.

Though it stems from Bézier-related considerations, the
method to construct the blended cubic spline fairly strongly
departs from the composite Bézier approach used for interpo-
lation in [1,3]. Indeed, it can be described without appealing
to Bézier concepts such as the Bernstein basis polynomials
and the De Casteljau algorithm, and the curve obtained at the
limit λ → ∞ is in general not the curve obtained by the inter-
polation method of [1,3]. We also present several Bézier-like
curve fitting methods (see Sect. 6), but each of them fails
to satisfy at least one of the above-mentioned properties.
These Bézier-like methods are nevertheless worth consid-
ering because they are not necessarily inferior in practical
applications (see Sect. 7). Moreover, in Sect. 4, we present a
genuine composite Bézier fitting method (Algorithm 2) that
satisfies properties (ii)–(vi), and also property (i) when the
data points are not too far spread out. The various methods
are compared in Sect. 7, where we also show that addressing
the fitting problem in a single tangent space—another strat-
egy that satisfies all the above-mentioned properties—is less
satisfactory in practice than the proposed blending method.

1.4 Outline

The paper is organized as follows. Preliminaries on Bézier
curves and Riemannian manifolds are given in Sect. 2. The
background onC1 piecewise-Bézier interpolation is recalled
in Sect. 3. Then, a C1 piecewise-Bézier fitting technique
is analyzed in Sect. 4 as a generalization of the interpola-
tion technique, and its limitations as an interpolation method
when λ → ∞ are highlighted. In Sect. 5, the proposed blend-

ing method (which fixes these limitations) is described and
analyzed. Several Bézier-like alternatives are presented in
Sect. 6. Numerical experiments are conducted in Sect. 7. A
summary and some perspectives are drawn in Sect. 8.

2 Preliminaries

2.1 Euclidean Composite Bézier Curves

In this section, we briefly summarize the concept of Bézier
curves in a Euclidean space R

m . We also define the com-
posite Bézier curve and the conditions needed to obtain
C1-continuity along this curve. Finally, we present the
De Casteljau algorithm that evaluates Bézier curves in a
recursive way and admits a well-known generalization to
manifolds [29]. More details about Bézier curves can be
found in [11].

Bézier curves in R
m , defined next, are nothing else than

polynomials expressed in a particular basis.

Definition 2.1 (Bézier curve). Consider a sequence of con-
trol points b0, . . . , bK ∈ R

m , K ∈ N. The Bézier curve
βK : [0, 1] → R

m of degree K is defined as

βK (·; b0, . . . , bK ) : [0, 1] → R
m, t �→

K∑
j=0

b j B jK (t), (2)

where BjK (t) = (K
j

)
t j (1 − t)K− j are the Bernstein

basis polynomials. In particular, the cubic Bézier curve
β3 = β3(t; b0, b1, b2, b3) driven by the control points
b0, b1, b2, b3 is given by

β3 := b0(1 − t)3 + 3b1(1 − t)2t + 3b2(1 − t)t2 + b3t
3.

(3)

The Bézier curve interpolates its first and last control
points, and its velocity (i.e., time derivative) β̇K at t = 0
(resp. t = 1) is tangent to the segment joining its two first
(resp. two last) control points. In short:

βK (0; b0, . . . , bK ) = b0, (4)

βK (1; b0, . . . , bK ) = bK , (5)

β̇K (0; b0, . . . , bK ) = K (b1 − b0), (6)

β̇K (1; b0, . . . , bK ) = K (bK − bK−1). (7)

A simple algorithm to evaluate βK (t; b0, . . . , bK ) =: xK0 at
time t ∈ [0, 1] is the so-called De Casteljau algorithm. As it
is based only on convex combinations of two points, it has a
simple geometric interpretation, as represented in Fig. 1.
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Fig. 1 Geometric interpretation of the De Casteljau algorithm [11]
applied to a quadratic Bézier curve β2(t; b0, b1, b2) ∈ R

2. At each
step, one computes a convex combination of two consecutive points

Definition 2.2 (De Casteljau). The De Casteljau algorithm
on R

m reads

x0i := bi for i = 0, . . . , K
xkj := (1 − t)xk−1

j + t xk−1
j+1 for k = 1, . . . , K

and j = 0, . . . , K − k.

Definition 2.3 (Composite Bézier curve). Consider now a
sequence (β i

Ki
)N−1
i=0 of N Bézier curves of degree Ki , i =

0, . . . , N − 1, determined by control points bi0, . . . , b
i
Ki

∈
R
m . The composite Bézier curve B is defined as

B : [0, N ] → R
m, t �→ β i

Ki

(
t − i; bi0, . . . , biKi

)
, i = �t�,

(8)

where �t� is the largest integer i ≤ t , with an exception for
�N� := N − 1.

Remark 2.4 For simplicity, we restrict to composite curves
whose pieces are defined on intervals [i, i + 1], i ∈ Z, but
the step to define them on any interval [ti , ti+1] is direct.

The next proposition follows directly from (4) and (5).

Proposition 2.5 (Continuity of the composite Bézier curve).
The composite Bézier curve made of N segments is con-
tinuous if the last and first control points of every two
consecutive Bézier curves are the same. We introduce them
as pi := biKi

= bi+1
0 , i = 0, . . . , N − 2.

In addition to continuity, we state now conditions for B
to be continuously differentiable at t = i . (differentiability
is ensured on the rest of the domain since Bézier curves are
polynomials). We introduce the notations b−

i for the second

to last control point of the (i−1)th Bézier curve ofB (namely,
bi−1
Ki−1−1), and b

+
i for the second control point of the i th Bézier

curve (i.e., bi1). The conditions follow from (6) and (7).

Proposition 2.6 (Differentiability of the composite Bézier
curve). The composite Bézier curve is differentiable at t = i
if the following C1-conditions hold:

pi = Ki−1b
−
i + Kib

+
i

Ki−1 + Ki
, i = 1, . . . , N − 1. (9)

Geometrically, this condition means that pi , b
−
i and b+

i
must be aligned.

Example 2.7 (C1 composite cubic Bézier curve). A compos-
ite cubic Bézier curveB is represented in Fig. 2.B : [0, 5] →
R is composed of five cubic Bézier curves and is defined
as B(t) = β3(t − i; pi , b+

i , b−
i+1, pi+1) for i = �t�. Con-

tinuity is trivial. Continuous differentiability is given by
pi = 0.5(b−

i + b+
i ), i = 1, . . . , 4.

2.2 RiemannianManifolds

Before reviewing the generalization of Bézier curves to man-
ifolds in Sect. 2.3, we now introduce the necessary concepts
of Riemannian geometry. Detailed information on Rieman-
nian manifolds can be found, for example, in [2,8,26].

Consider a Riemannian manifold M. TaM denotes the
(Euclidean) tangent space toM at a ∈ M ; the tangent bun-
dle toM is denoted by TM. Tangent spaces on Riemannian
manifolds are endowed with a smoothly varying inner prod-
uct. Let 〈·, ·〉a denote the inner product between two tangent
vectors ξ, η ∈ TaM, with a ∈ M and let ‖ξ‖a = √〈ξ, ξ 〉a
be the corresponding norm.

It is now possible to define the length and the energy of a
path γ : [0, 1] → M as

Lγ =
∫ 1

0

√
〈γ̇ (t), γ̇ (t)〉γ (t)dt (10)

and

Eγ =
∫ 1

0
〈γ̇ (t), γ̇ (t)〉γ (t)dt, (11)

where γ̇ stands for the time derivative of the curve γ . The
paths γ minimizing (11) subject to the endpoint conditions
γ (0) = a and γ (1) = b are termed minimizing geodesics,
and their length is the Riemannian distance dM(a, b). When
it is unique (a generic property when the manifold is com-
plete [16]), the minimizing geodesic is denoted by g(t; a, b).
Note that, for any pair of points outside a set of measure zero,
this unique minimizing geodesic exists [16]. A geodesic is
a locally length-minimizing curve. Note that, as g(t; a, b)
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Fig. 2 Schematic representation
of the composite cubic Bézier
curve B : R → M, for M = R.
The control points (green
circles) fully determine the
curve; continuous
differentiability is reached at the
junction pi of the segments if
the consecutive control points
(b−

i , pi , b
+
i ), i = 1, . . . , n − 1,

are aligned on a geodesic (the
blue arrows draw the first
derivative of B) (Color figure
online)
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minimizes (11), it also minimizes (10) as mentioned in [8,
Chapter 3].

We denote by expa : TaM → M, ξ �→ b = expa(ξ), the
Riemannian exponential map, where b is the point attained
at time t = 1 by the geodesic γ satisfying γ (0) = a and
γ̇ (0) = ξ . This map is bijective from Da := {ξ ∈ TaM :
‖ξ‖a < ra} to Da := {b ∈ M : dM(a, b) < ra}, where
ra ∈ R is called the injectivity radius at a. The inverse
exponential map is called the Riemannian logarithm map.
It is noted loga : Da → TaM, b �→ ξ = loga(b) and pro-
vides the initial velocity ξ = ġ(t; a, b)|t=0 ∈ TaM of the
geodesic g(t; a, b). Therefore, for a ∈ M, b ∈ Da , and
under the standing assumption from the introduction, one
can compute the minimizing geodesic between a and b as
g(t; a, b) = expa(t loga(b)). Note that expa ◦ loga is the
identity onDa (and actually everywhere onM except on the
cut locus of a), and loga ◦ expa is the identity on Da .

Finally, we introduce notions related to the weighted
geodesic average between two points x1, x2 ∈ M and for
w ∈ [0, 1], noted y = av[(x1, x2), (1−w,w)]. This average
corresponds to the value y ∈ M that solves miny∈M(1 −
w)d2M(x1, y)+wd2M(x2, y) (if this minimizer is unique and
exists). It has been shown [1, Remark 3] that this average
reduces to the geodesic evaluated at t = w, i.e.,

av[(x1, x2), (1 − w,w)] = expx1(wlogx1(x2)).

The multigeodesically convex hull co(U ) of a set U ⊂ M
is the smallest set S ⊂ M containing U , such that it con-
tains any weighted geodesic average between any of its
points. This set co(U ) is called proper if the weighted aver-
ages between any finitely many points in U are unique and
smoothly depend on their weights and points [1].

2.3 Bézier Curves onManifolds

We can now recall the definition of composite Bézier curves
on manifolds. Crouch [9] and Lin and Walker [20] proposed

a generalization of the De Casteljau algorithm on Lie Groups
and on Riemannian manifolds. Furthermore, the C1 condi-
tions on the composite Bézier curve can be obtained thanks
to the works of Popiel and Noakes [29]. We briefly review
these results.

The following definition generalizes the Bézier curves
to manifolds through the De Casteljau algorithm (Defini-
tion 2.2). It only requires Riemannian exponentials and
logarithms.

Definition 2.8 (Bézier curve on manifold). Consider a set
of control points b0, . . . , bK ∈ M, K ∈ N, such that
the convex hull co(b0, . . . , bK ) is proper. The Bézier curve
βK (·; b0, . . . , bK ) : [0, 1] → M is defined recursively at t
by

x0i := bi for i = 0, . . . , K

xkj := expxk−1
j

(
t logxk−1

j
xk−1
j+1

)
for k = 1, . . . , K

and j = 0, . . . , K − k.

Finally, βK (t; b0, . . . , bK ) := x0K . Note that, the exp-log
formulation of xkj gives a geodesic between xk−1

j and xk−1
j+1,

and replaces the straight line from Definition 2.2.

Popiel andNoakes [29] have shown that properties (4)–(7)
carry over to manifolds in the following form:

βK (0; b0, . . . , bK ) = b0, (12)

βK (1; b0, . . . , bK ) = bK , (13)

β̇K (0; b0, . . . , bK ) = K logb0(b1), (14)

β̇K (1; b0, . . . , bK ) = −K logbK (bK−1). (15)

These properties confirm that the first and last control points
of the manifold-valued Bézier curve are interpolated. They
also mean that the first (resp. last) temporal derivative of the
curve is tangent to the geodesic joining the two first (resp.
two last) control points of the curve. We can now generalize
the composite Bézier curve to manifolds.
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Definition 2.9 (Composite Bézier curve on manifold). Con-
sider the sequence of control points (pi = bi0, b

+
i =

bi1, . . . , b
−
i+1 = biKi−1, pi+1 = biKi

)N−1
i=0 ∈ M, defining

a sequence of N manifold-valued Bézier curves (β i
Ki

)N−1
i=0

with β i
Ki

: [0, 1] → M for all i . The composite Bézier curve
B : [0, N ] → M is defined analogously to the Euclidean
case, i.e., according to Eq. (8).

The next proposition states the conditions for a composite
Bézier curve to be of class C1. Along with the fact that Defi-
nition 2.8 only requires exponential and logarithm maps, the
simplicity of these C1 conditions is the main motivation for
resorting to composite Bézier curves in order to generalize
C1 piecewise polynomial curves to manifolds.

Proposition 2.10 (Continuity and differentiability). The
composite Bézier curve composed of N segments on a man-
ifold M is continuous if biKi

= bi+1
0 , for i = 0, . . . , N − 2.

Note that the notation pi introduce in Definition 2.9 thus
anticipated the continuity condition.) As mentioned in [1,3],
it will be C1-continuous if

1

Ki−1
logpi (b

−
i ) = − 1

Ki
logpi (b

+
i ), i = 1, . . . , N − 1.

(16)

Similarly to (9), this condition holds if pi is on a geodesic
between b+

i and b−
i and satisfies

pi = g
(

Ki−1
Ki−1+Ki

; b−
i , b+

i

)
.

Example 2.11 (C1 composite cubic Bézier curve on mani-
fold). We consider the same composite cubic Bézier curve
as in Example 2.7, but now defined on a Riemannian man-
ifold M. The curve is defined as B : [0, 5] → M : B(t) =
β3(t−i; pi , b+

i , b−
i+1, pi+1), for i = �t�. Continuity is again

trivial. Continuous differentiability is verified if

pi = g(0.5; b−
i , b+

i ), i = 1, . . . , 4. (17)

3 Interpolation with Composite Bézier
Curves

Interpolation on manifolds with composite Bézier functions
was studied in previous papers. In the approach of Arnould et
al. [3], the composite Bézier curve interpolates n data points
by means of n − 1 Bézier curves. The first and last ones are
quadratic Bézier curves while all the others are cubic. In
Absil et al. [1], the question of surfacic (i.e., depending on
two parameters) Bézier interpolation is treated.

In this section, we consider interpolation with a composite
cubic Bézier curve. The method to determine the control

points of the n − 1 segments of Bézier is similar to [3] but
the main difference is that all pieces are now cubic curves,
such that the final composite Bézier curve is the natural cubic
spline when the manifold is a Euclidean space. In short, the
approach works as follows. Given the manifold-valued data
pointsd0, . . . , dn at parameter values t0, . . . , tn , one seeks the
interpolatingC1 composite cubic Bézier curveB : [t0, tn] →
M minimizing (1) for λ → ∞, i.e.,

min
B

∫ tn

t0

∥∥∥∥D
2B(t)

dt2

∥∥∥∥
2

B(t)
dt s.t. B(ti ) = di . (18)

Without loss of generality, we will assume throughout this
section that the time parameters ti = i , i = 0, . . . , n, and
that

B(t) = β3
(
t − i; di , b+

i , b−
i+1, di+1

)
, i = �t�. (19)

As the first and last control points of each segment are the
data points, interpolation is ensured by Eqs. (12) and (13).
As a result, the optimization problem reduces to finding the
remaining control points b+

i , b−
i+1 ∈ M, i = 0, . . . , n − 1,

that minimize the mean square acceleration of B under
the differentiability conditions (16). This problem, however,
leads to a time-consuming nonlinear constrained optimiza-
tion problemonmanifolds. Therefore,weproceed as follows:
we consider the case whereM = R

m and compute the opti-
mal (Euclidean) control points (b+

i , b−
i+1), i = 0, . . . , n− 1,

of B such that (18) is minimized. Since the composite
cubic Bézier form encompasses all cubic splines, the opti-
mal control points correspond to the interpolating natural
cubic (which is known to minimize the mean-squared accel-
eration under interpolation conditions [14, Theorem 2.3])
and thus satisfy the differentiability conditions of Proposi-
tion 2.6. The optimality conditions on the control points are
then generalized to a manifold M. The resulting C1 inter-
polating composite cubic Bézier curve is not guaranteed to
have a minimal mean-squared acceleration, even among all
C1 interpolating composite cubic Bézier curve. However, by
construction, it is optimal when the manifold is Euclidean.
Hence, it can be expected to be close to optimal when the
manifold is “sufficiently flat.”

3.1 Computation of the Control Points

Let us consider the case M = R
m and the data points

d0, . . . , dn ∈ R
m at parameter values ti = i , i = 0, . . . , n.

The optimization problem (18) becomes

min
Γ

∫ n

0
‖B̈(t)‖22dt, (20)
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as the covariant second derivative D2·
dt2

is the classical time
derivative on Rm , and the manifold-valued norm is the clas-
sical 2-norm. The search space Γ is reduced to the space of
composite cubic Bézier curves ΓB onRm that interpolate the
data points, namely,

ΓB = {B(t) = β3
(
t − i; di , b+

i , b−
i+1, di+1

)
, i = �t�}.

The remaining optimization variables are

Γ ′
B = {

b+
0 , b−

1 , . . . , b+
n−1, b

−
n

}
.

The differentiability constraints (16), on R
m , read b+

i =
2di − b−

i (Proposition 2.6). Hence, the only remaining
degrees of freedom of the Euclidean problem are {b+

0 , b−
i },

i = 1 . . . , n, which will be our optimization variables.
In summary, the optimization problem reduces to

min
Γ ′
B

∫ n

0
‖B̈(t)‖22dt, s.t. b+

i = 2di − b−
i , (21)

for i = 1, . . . , n − 1.
This problem is actually quadratic in its n+1 variables, as

B(t) depends linearly on the control points. Furthermore, it
can be split intom smaller scalar problems in each of the com-
ponents of Rm . The optimality conditions of (21) take then
the form of m independent linear systems, that we formulate
as A · X = C · D, where X = [b+

0 , b−
1 , b−

2 , . . . , b−
n ]T ∈

R
(n+1)×m contains the remaining optimization variables,

D = [d0, . . . , dn]T ∈ R
(n+1)×m contains the data points

of the problem, and A,C ∈ R
(n+1)×(n+1) are matrices of

coefficients. The details are given in “Appendix A.1.”
The solution of this linear system is given by

X = A−1 · C · D =: W · D.

In other words, each control point xi of X is obtained as a
simple weighted sum of the data points (di )ni=0:

xi =
n∑
j=0

wi j d j , i = 0, . . . , n. (22)

To generalize this result to Riemannian manifolds, we do
not solve the manifold-valued version of (21) directly (note
that very recentwork about this approach can be found in [5]),
but we rather generalize the optimality conditions (22) to get
a formula to compute the control points onM. Note that the
resulting piecewise-Bézier curve is not guaranteed to be a
solution of (18), except ifM is flat (see Proposition (3.2)).

To do so, we observe that
∑n

j=0 wi j = 1. This property
can be deduced from the fact that the problem is invariant
to translations. Indeed, one can write identically the shifted
optimality conditions (22) as

xi − dref =
n∑
j=0

wi j (d j − dref), i = 0, . . . , n,

for any dref. These differences can be interpreted as Rieman-
nian logarithms loga(b) = b − a on the Euclidean space. In
other words, one can interpret the shifting of the optimality
conditions as a mapping of the point xi to the tangent space
TdrefM at dref.

Consider now a generalmanifoldM, the list of data points
d0, . . . , dn ∈ M, the search space Γ ′

B ⊆ M2n and the
remaining optimization variables xi ∈ M, i = 0, . . . , n.
The optimality conditions (22) are naturally generalized as

x̃i = logdref(xi ) =
n∑
j=0

wi j logdref(d j ) ∈ TdrefM, (23)

for i = 0, . . . , n. Then, xi = expdref(x̃i ).
The remaining task consists now in choosing a suitable

reference point dref for each variable xi . A first possible
choice is to use the same reference point for all variables.
However, for points far from dref, the tangent space TdrefM
will generally be a bad approximation ofM, and the result-
ing curve may be of poor quality. Instead, we propose to
choose a different reference point for each xi , such that the
most important data points averaged in Eq. (23) (i.e., the
data points associated with the largest weights wi j ) are well
approximated on TdrefM. In the case of the control point
xi = b−

i , i = 1, . . . , n, the largest weight iswi i , so dref = di .
For x0 = b+

0 , the same rule is applied and dref = d0.
In view of the differentiability constraints (16), we get the

other control points as

b+
i = expdi (− x̃i ), i = 1, . . . , n − 1, (24)

and the final composite Bézier curve B is reconstructed with
the De Casteljau algorithm (see Definition 2.8).

The previous development results in the following defi-
nition for an interpolating composite cubic Bézier curve on
manifold.

Definition 3.1 (Interpolating C1 composite cubic Bézier
curve on manifold). The proposed composite cubic Bézier
curve B : [0, n] → M, interpolating the manifold-valued
data points d0, . . . , dn at parameter values t0 = 0, . . . , tn =
n, is defined as

B(t) = β3
(
t − i; di , b+

i , b−
i+1, di+1

)
, i = �t�,

where β3 is as in Definition 2.8. The control points b+
0 , b−

i
for i = 1, . . . , n are defined by (23), with dref = di , while the
remaining control points b+

i , i = 1, . . . , n − 1, are defined
by the C1 conditions (24).
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The full algorithm to generate the curve of Definition 3.1
is presented in Algorithm 1.

Algorithm 1 Interpolating C1 composite cubic Bézier curve
approaching the solution of (18).
Require: d0, . . . , dn ∈ M, A and C from Appendix A.1
Init: s0 = . . . sn = 0.
W ← A−1C % matrix of weights
for i = 0, . . . , n do

dref ← di % reference point
for j = 0, . . . , n do

s j ← logdref (d j ) % mapping to TdrefM
end for
x̃ ← ∑n

k=0 wik sk % cp generation
x ← expdref (x̃) % mapping to M
if i �= 0, i �= n then

b−
i ← x
b+
i ← expdref (−x̃) % C1 condition (16)

else if i = 0 then
b+
0 ← x

else {i = n}
b−
n ← x

end if
end for
% De Casteljau algorithm (Definition 2.8)
B(t) = β3(t − i; di , b+

i , b−
i+1, di+1), i = �t�.

3.2 Properties of the Interpolating Curve

Asmentioned in the introduction, we seek aC1 interpolating
curve that results in a low value of the cost function of (18).
We see here how the curve of Definition 3.1 fulfills these
specifications.

Proposition 3.2 (Natural cubic spline). For M = R
m, the

interpolating composite cubic Bézier curve B : [0, n] → R
m

of Definition 3.1 is the natural cubic spline that minimizes the
mean square acceleration under the interpolation conditions.

Proof By construction. ��
Theorem 3.3 (C1 interpolation). Consider the data points
d0, . . . , dn ∈ M associated with parameter values ti = i ,
i = 0, . . . , n. The composite cubic Bézier curve B(t) : [0, n]
→ M of Definition 3.1 fulfills the following properties:

(i) B(i) = di , i = 0, . . . , n;
(ii) B(t) is differentiable at t ∈ [0, n] if ‖x̃i‖ < rdi , i =

1, . . . , n − 1.

Proof (i) follows from (12) and (13) (Property 2.10). Let
us prove (ii). By definition, the Bézier curve is differen-
tiable on its domain [29]. Therefore, there only remains to
prove that the composite Bézier curve is differentiable at
t = i , i = 1, . . . , n − 1, i.e., at the points where two con-
secutive segments join. Consider i ∈ {1, . . . , n − 1}. As

‖x̃i‖ < rdi , we have that logdi (b
−
i ) = logdi (expdi (x̃i )) =

x̃i = −logdi (expdi (−x̃i )) = −logdi (b
+
i ). By Eqs. (14) and

(15), one has

dB(t)

dt

∣∣∣∣
t=i−

= dB(t)

dt

∣∣∣∣
t=i+

.

��
Proposition 3.4 (Minimal representation of the interpolating
curve). The interpolating curve (Definition 3.1) is uniquely
represented by n + 1 tangent vectors.

Proof All the control points mentioned in Definition 3.1 are
obtained from the n + 1 tangent vectors x̃i ∈ TdiM, i =
0, . . . , n, as stated in the relevant parts of Algorithm 1. ��
Proposition 3.5 (Exponential and logarithmmaps required).
The number of exponential and logarithm maps required to
compute the interpolating curve (Definition 3.1) is

• n(n + 1) logarithms for the construction of the minimal
representation of the curve of Proposition 3.4;

• 8 exponential and 6 logarithm maps to reconstruct the
curve B(t), for a given parameter value t, given that
minimal representation.

Proof The n(n+1) logarithmsmaps are required for the eval-
uation of Eq. (23). Then, the reconstruction of the curve at a
given time t requires 1 exponential map for b−

�t�, 1 exponen-
tial map for b+

�t�, and 6 additional exponential and logarithm
maps for the De Casteljau algorithm. ��

4 Fitting with Composite Bézier Curves

In [13], composite Bézier curves were used to fit manifold-
valued data points. The method developed is based on the
same framework as [3], i.e., quadratic Bézier curves for the
first and last segment, and cubic Bézier curves for inner seg-
ments.

In this section, we generalize the result of Sect. 3 to
the fitting problem. We are again given n + 1 data points
d0, . . . , dn on a Riemannian manifold M, at times ti = i ,
i = 0, . . . , n. We seek now the C1 composite cubic Bézier
curve B : [0, n] → M defined as

B(t) = β3
(
t − i; pi , b+

i , b−
i+1, pi+1

)
, i = �t�, (25)

minimizing (1) for λ > 0. Note that, compared to Sect. 3,
the data points di are no longer the end points of the Bézier
curves.

Instead of solving the problem (1) directly, we use, simi-
larly as in the previous section, a suboptimal route: we first

123



Journal of Mathematical Imaging and Vision

determine optimality conditions on the control points of B,
such that (1) is minimized when M is Euclidean. Then, we
generalize these conditions to any manifold M. However,
we will see that this method sometimes fails to satisfy the
first property we required in the introduction, namely, the
fact that the curve obtained should interpolate the data points
when λ → ∞.

4.1 Control Points Generation for Cubic Bézier
Curves

Similarly as in Sect. 3, one needs to determine the position
of the 3n + 1 control points of B.

We consider the Euclidean case M = R
m and the data

points di ∈ R
m corresponding to parameter values ti = i , i =

0, . . . , n. Now, we also consider λ > 0, the regularization
parameter. The problem (1) becomes then

min
B∈Γ ′

B

∫ n

0
‖B̈(t)‖22dt + λ

n∑
j=0

‖d j − p j‖22.

The search space is the set of control points

Γ ′
B = {

p0, b
+
0 , b−

i , pi , b
+
i , b−

n , pn
}n−1
i=1 ,

subject to the n−1 differentiability conditions (17), namely,

pi = b−
i +b+

i
2 , i = 1, . . . , n − 1. The final problem is now

min
B∈Γ ′

B

∫ n

0
‖B̈(t)‖22dt + λ

n∑
j=0

‖d j − p j‖22, (26)

s.t. pi = b−
i + b+

i

2
, i = 1, . . . , n − 1. (27)

Since in R
m the set of C1 composite cubic Bézier curves

encompasses the cubic splines, the optimal control points
correspond to the well-known cubic smoothing spline, see,
e.g., [14, Theorem 2.4].

The cost function (26) is a quadratic function in its control
points. Following the same path as in Sect. 3, we decouple
the problem intom independent problems, and we formulate
these as (A0 + λA1) · X = λC · D where

X = [
p0, b

+
0 , b−

1 , b+
1 . . . , b+

n−1, b
−
n , pn

]T ∈ R
(2n+2)×m

contains the 2n + 2 remaining control points to optimize,

stored as row vectors, and where D = [
d0, . . . , dn

]T ∈
R

(n+1)×m contains the data points. The matrices A0, A1 ∈
R

(2n+2)×(2n+2) and C ∈ R
(2n+2)×(n+1) are matrices of coef-

ficients. They are given in “Appendix A.2.”
The Euclidean optimality conditions X = λ(A0 +

λA1)
−1C ·D =: W ·D areweighted combinations of the data

points, so that each optimization variable xi of X satisfies

xi =
n∑
j=0

wi j d j , i = 0, . . . , 2n + 1, (28)

where
∑n

j=0 wi j = 1.
Consider now the data points d0, . . . , dn on a Rieman-

nian manifold M. We consider also the search space Γ ′
B ⊆

M3n+1 and the optimization variables xi ∈ M, i =
0, . . . , 2n+1. Similarly to Sect. 3, we rewrite the optimality
conditions (28) as:

x̃i = logdref(xi ) =
n∑
j=0

wi j logdref(d j ) ∈ TdrefM, (29)

for i = 0, . . . , 2n+1. The control point xi is finally obtained
by xi = expdref(x̃i ). To minimize distortions due to the pro-
jection of the data on the tangent space TdrefM and back on
the manifold, we choose dref as the closest data point from
the control point xi . Namely, dref = d j , if xi = b−

j or b+
j ,

j = 1, . . . , n − 1, and we choose dref = d0 (resp. dref = dn)
for the case xi = p0 or xi = b+

0 (resp. b−
n or pn). Afterward,

one can retrieve pi , i = 1, . . . , n−1with the differentiability
constraints (17):

pi = g(0.5; b−
i , b+

i ), i = 1, . . . , n − 1. (30)

The associated composite Bézier curve B(t) : [0, n] → M
is finally reconstructed with the De Casteljau algorithm pre-
sented in Definition 2.8.

The previous reasoning leads to the following definition
for a fitting composite cubic Bézier curve on a manifold.

Definition 4.1 (Fitting C1 composite cubic Bézier curve on
manifold). For a given value of the parameter λ > 0, the
proposed composite cubic Bézier curve B : [0, n] → M, fit-
ting the manifold-valued data points d0, . . . , dn at parameter
values t0 = 0, . . . , tn = n, is defined as

B(t) = β3
(
t − i; pi , b+

i , b−
i+1, pi+1

)
, i = �t�,

where β3 is as in Definition 2.8. The control points p0, b
+
i ,

b−
i+1, pn , i = 0 . . . , n−1, are defined by (29) with dref = di ,
while the remaining control points pi , i = 1, . . . , n − 1, are
defined by (30).

The full algorithm to generate a fitting composite cubic
Bézier curve on manifold is presented in Algorithm 2.

An example of a composite cubic Bézier curve fitting a
set of data on R

2 is given in Fig. 3a and on the sphere S2 in
Fig. 3b. Note that both results were obtained with the exact
same code,where the only differencewas the definition of the
exponential and logarithm maps. Exponential and logarithm
maps on S

2 and SO(3) are given in “Appendix A.3.”
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λ = 100 λ = 108

λ = 10

λ = 100 λ = 108

λ = 10

(b)(a)

Fig. 3 Composite cubic Bézier curve fitting a set of data points on a
manifold M for different values of the regularization parameter λ. a
On the Euclidean space R

2. b On the sphere S
2. The (solid red) data

points are fitted by the (blue) curve defined by the (circled green) con-
trol points. Fitting becomes interpolation when λ → ∞ (Color figure
online)

Algorithm 2 Fitting C1 composite cubic Bézier curve
approaching the solution of (1).
Require: d0, . . . , dn , λ > 0, A0, A1 and C (Appendix A.2).
Init: s0 = · · · = sn = 0.
W ← (A0 + λA1)

−1C % matrix of weights

for i = 0, . . . , n do
dref ← di % reference point
for j = 0, . . . , n do

s j ← logdref (d j ) % mapping to TdrefM
end for
x̃ ← ∑n

k=0 w(2i)ksk % cp generation
ỹ ← ∑n

k=0 w(2i+1)ksk
x ← expdref (x̃) % mapping to M
y ← expdref (ỹ)
if i �= 0, i �= n then

b−
i ← x
b+
i ← y
pi ← g(0.5; x, y) % C1 condition (17)

else if i = 0 then
p0 ← x
b+
0 ← y

else {i = n}
b−
n ← x
pn ← y

end if
end for
% De Casteljau algorithm (Definition 2.8)
B(t) = β3(t − i; pi , b+

i , b−
i+1, pi+1), i = �t�.

4.2 Properties of the Fitting Composite Cubic Bézier
Curve

We present here some properties of the fitting composite
cubic Bézier curve of Definition 4.1.

Proposition 4.2 (Natural cubic spline).WhenM = R
m, the

composite cubic Bézier curve B : [0, n] → R
m of Defini-

tion 4.1 is the cubic smoothing spline that minimizes (1) over
the Sobolev space H2(0, n).

Proof By construction. ��
Theorem 4.3 (C1 interpolation when λ → ∞). Consider
the data points d0, . . . , dn ∈ M associated with parameter
values ti = i , i = 0, . . . , n, and the control points p0, b

+
0 ,

b−
i , pi , b

+
i , b

−
n , and pn, i = 1, . . . , n−1. Let r = infa∈M ra

be the injectivity radius of M. The composite cubic Bézier
curve B(t) defined in Definition 4.1 satisfies the following
properties:

(i) If λ → ∞ and ‖x̃i‖M < r
2 , for x̃i defined by (29) then

dM(B(i), di ) = dM(pi , di ) → 0;
(ii) B(t) is differentiable at t ∈ [0, n].

Proof We show directly property (ii), as by construction
logpi (b

+
i ) = −logpi (b

−
i ), so we only have to verify Prop-

erty (i). By hypothesis, b−
i and b+

i both lie in the set
Ddi (

r
2 ) := {y ∈ M : dM(di , y) < r

2 }. Due to the trian-
gle inequality, dM(b−

i , b+
i ) ≤ dM(di , b

−
i )+dM(di , b

+
i ) <

r . Hence, (b−
i , b+

i ) �→ expb−
i

(
1
2 logb−

i
(b+

i )
)

is continu-

ous. Since interpolation holds on the Euclidean case when
λ → ∞, we have that limλ→∞ x̃i = − limλ→∞ ỹi (see
Algorithm 2). Hence, di is the midpoint of the minimizing
geodesic between x := limλ→∞ b−

i and y := limλ→∞ b+
i ,

i.e., di = expx (
1
2 logx (y)). It follows that limλ→∞ pi = di .

��
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This theorem shows that, when λ → ∞, the composite
cubic Bézier curve B of Definition 4.1 interpolates the data
points if they are not too spread out, since ‖x̃i‖M is then
small for all i . Otherwise, interpolation as λ → ∞ may not
hold, and we show some examples in the next section.

4.3 Lack of Interpolation when � → ∞
A first illustration of the limitation suggested by Theo-
rem 4.3(i) can be observed on S+(p, q), the manifold of
positive semidefinite matrices of size p and rank q, equipped
with the metric from [36, §7.2]. A second illustration will be
also given on the unit circle S1.

Example 4.4 (Lack of interpolation on S+(p, q)). The
S+(p, q) manifold arises in the development of efficient
and safe navigating tools for UAV’s (unmanned aerial vehi-
cles). These navigating tools rely on faithful models for the
wind field. In [13], the wind field is modeled as a Gaus-
sian process, characterized by a mean field and a covariance
matrix C ∈ S+(3024, 20). Those two parameters depend on
some external meteorological conditions. In [13], they are
parametrized by the orientation θ of the prevailing wind in
the area of interest. For a given prevailing wind orientation θ ,
the mean field and the corresponding covariance matrix can
be estimated from time-consuming numerical simulations.
The approach proposed in [13] is to run those simulations
for some key orientations of the prevailing wind, and to
obtain values for intermediate orientations by fitting a curve
B(θ) to those points. We use the dataset of [13], made of
33 covariance matrices Ci ∈ S+(3024, 20), i = 1, . . . , 33,
corresponding to 33 different orientations θi = (i − 1)π/64.
The manifold S+(p, q) is here seen as a quotient manifold
R

p×q∗ /O(q), where Rp×q∗ is the set of full rank matrices of
size p × q, and O(q) is the manifold of orthogonal matri-
ces of size q × q. This quotient manifold is endowed with
the metric proposed in [36, §7.2] and its geometry is studied
in [24].

Applying Algorithm 2 with λ = 108 to those data, we
observe in Fig. 4 that the composite cubic Bézier curve B(θ)

does not interpolate one of the data points, the interpolation
error at that point being several orders of magnitude higher
than at the other points. The reason of this interpolation error
is directly related to Theorem 4.3 whose hypotheses are not
met. Indeed, there is no guarantee that ‖x̃i‖M < r

2 . Actually,
we can even show that, for the metric considered here, the
local injectivity radius around a point a ∈ S+(p, q) is equal
to the square root of the smallest eigenvalue of a, which
means that it tends toward zero as a tends toward the border
of the manifold.

The next example deals with the circle S
1, a manifold

whose injectivity radius is equal to π . We provide a con-
figuration of data points that violates the assumptions of

0 20 40 60 80
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Fig. 4 Interpolation error between the curve B(θ) and the data points
C1,C3,C5, . . . ,C33 ∈ S+(3024, 20) extracted from [13]. The param-
eter λ is set to 108. We observe that the error made on the data point
C13 is several orders of magnitude higher than the error made on the
others

Theorem 4.3, and for which interpolation is indeed not
achieved.

Example 4.5 (Lack of interpolation in S
1). Consider the set

of data points d0, . . . , d4 represented in Fig. 5a. The position
of the data points d0 and d4 has been chosen, respectively,
on the lower half circle and the upper half circle (here, at
ξ0 = − 120◦ and ξ4 = 120◦). The data point d2 corresponds
to an angle ξ2 = 0◦, while data points d1 and d3 correspond,
respectively, to angles ξ1 = 179◦ and ξ3 = 181◦.

In Fig. 5b, we represent the curve obtained when we try
to interpolate the set of data points from Fig. 5a with Algo-
rithm 2. At time t = 2, the angle ξ is equal to −π , instead
of the desired value 0. Indeed, following (17), p2 = −π

is the midpoint of the shortest endpoint geodesic between
the control points b−

2 and b+
2 . Unfortunately, as indicated in

Fig. 5a, d2 = 0 is themidpoint of a non-minimizing geodesic
γ̄ between b−

2 and b+
2 (because ‖logd2(b−

2 )‖ > r
2 , as well as‖logd2(b+

2 )‖), while the midpoint of the shortest geodesic γ

between the two data points is given by ξ = −π . Therefore,
d2 is not interpolated by B(t).

4.4 Alternative Definition of the Control Points to
Ensure InterpolationWhile Losing
Differentiability

To overcome this limitation for any general manifold, we
propose now a solution that enforces the fitting curve to
interpolate the data points when λ → ∞, regardless of
the curvature of the manifold. This new condition will fix
the interpolation problem, but we will see that this condi-
tions yields to a loss of the differentiability condition that
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(b)(a)

Fig. 5 Second counterexample for interpolation by the fitting curve of
Definition 4.1, when λ → ∞. a Representation of the data set used for
the counterexample on the circle, as well as the two curves γ and γ̄ ,
for i = 2. The injectivity radius of the circle S1 is π . As the geodesic
length L γ̄ = | logd2 (b−

i ) | + | logd2 (b+
i ) | > π , the geodesic γ̄ is not

minimizing, while γ = g(t; b−
i , b+

i ) is. The consequence of this is that
pi �= di . b The curve ξ(t) = tan−1(B(t)) (solid blue) obtained by
applying Algorithm 2 to the (solid red) data points, with λ = 108, does
not interpolate all data points. Specifically, ξ(2) �= tan−1(d2) (Color
figure online)

we had before. As a consequence of that, it will be neces-
sary to modify the classical De Casteljau algorithm (usually
used at the reconstruction step) to propose a new defini-
tion of Bézier curves, compatible with the new C1-condition
(Sects. 5 and 6).

The solution to have interpolation modifies the definition
of the intermediary control points pi , i = 1, . . . , n − 1, as
follows.

Proposition 4.6 (Interpolation conditions). Let us consider
the tangent vectors b̃+

i and b̃−
i ∈ TdiM, i = 1, . . . , n − 1,

computed by (29). To interpolate the data points di when
λ → ∞, the control points pi , can be computed as (see
Fig. 6)

pi = expdi

(
b̃−
i + b̃+

i

2

)
, i = 1, . . . , n − 1. (31)

Proposition 4.6 is nothing more than another way to
generalize the Euclidean conditions of differentiability (9).
The two resulting definitions for the control points pi , i =
1, . . . , n − 1, are equivalent on the Euclidean space, while
they are not on a general Riemannian manifold. The differ-
ence compared to (30) is that here theC1 condition is directly
computed in the tangent space at di , and not at b−

i .
Applying these new interpolation conditions results in the

following definition for the fitting composite cubic Bézier
curve.

M

γi(t)

g(t; b−
i , pi)

g(t; pi, b
+
i )

di

b−
i b+i

pi

Tdi
M

γ̃i(t)

d̃i = 0

b̃−
i

b̃+i
p̃i

Fig. 6 Choice of the point pi with the interpolation conditions (31). As
p̃i ∈ TdiM is in the middle of the straight line γ̃i (t) joining b̃

−
i and b̃+

i ,
limλ→∞ pi = di . Furthermore, γi (t) = expdi (γ̃i (t)) is differentiable
at pi even if b−

i , pi and b+
i are not aligned on the same geodesic

Definition 4.7 (Fitting composite cubicBézier curve onman-
ifold II). For a given value of the parameter λ > 0, the
proposed composite cubic Bézier curve B : [0, n] → M,
fitting the manifold-valued data points d0, . . . , dn at param-
eter values t0 = 0, . . . , tn = n, is defined as

B(t) = β3(t − i; pi , b+
i , b−

i+1, pi+1), i = �t�.

The control points p0, b
+
i , b−

i+1, pn , i = 0, . . . , n − 1, are
defined by (29) with dref = di . The remaining control points
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pi , i = 1, . . . , n−1, are computed as in Proposition 4.6. The
Bézier curve β3 is reconstructed according to Definition 2.8.

We now list a set of properties that are verified by the
fitting curve of Definition 4.7.

Proposition 4.8 The composite cubic Bézier curve B(t) of
Definition 4.7 interpolates the data points when λ → ∞.

Proof We show here that B(i) → di , i = 0, . . . , n, when
λ → ∞. Let i ∈ {1, . . . , n − 1}. When λ → ∞, the weights
wi j in Eq. (29) are such that limλ→∞ b̃+

i = − limλ→∞ b̃−
i .

Therefore, limλ→∞ p̃i = 0 = d̃i , and thus, limλ→∞ pi = di .
For i ∈ {0, n}, interpolation is ensured by construction. ��
Proposition 4.9 (Minimal representationof thefitting curve).
The fitting curve of Definition 4.7 is uniquely represented by
2(n + 1) tangent vectors.

Proof The proof is similar to the one of Proposition 3.4. The
control points are obtained from the 2(n+1) tangent vectors
x̃, ỹ ∈ TdiM, i = 0, . . . , n, as stated in the relevant parts of
Algorithm 2. ��
Proposition 4.10 (Exponential and logarithmmaps required).
The number of exponential and logarithm maps required by
the fitting curve of Definition 4.7 is

• n(n + 1) logarithms for the construction of the minimal
representation of the curve of Proposition 4.9

• 10 exponential maps and 6 logarithmmaps to reconstruct
the curve B(t), for a given parameter value t, given that
minimal representation.

Proof The n(n + 1) logarithms maps are required for the
evaluation of (23). The reconstruction of the curve at a given
value of t require 4 exponential maps (to obtain the repre-
sentation on the manifold of the 4 control points associated
with the segment i = �t�), and the De Casteljau algorithm
requires 6 additional exponential and logarithm maps. ��
Proposition 4.11 The composite cubic Bézier curve of Defi-
nition 4.7 is not differentiable at pi .

Proof Consider a set of data points di ∈ R
2, i = 0, . . . , n,

and the corresponding parameter values t0 = 0, . . . , tn = n.
LetB be the fitting curve (Definition 4.7), for a given value of
λ. Without loss of generality, we fix i , and consider that the
associated data point di is equal to (0, 0). Assume now that
the data points belong actually to a manifold M similar to
R
2. More precisely, letM be the Euclidean space R2 except

in a small region between b−
i and b+

i where the metric is
smoothly reduced such that dM(b−

i , b+
i ) < dR2(b−

i , b+
i ) =

‖b+
i −b−

i ‖, as represented in Fig. 7. Finally, let us denote by
x̃ the representation in TdiM = R

2 of a point x ∈ M.

di

pi

b−
i

b+i
p′

i

Fig. 7 Proposition 4.6 is not compatible with the differentiability con-
straints, as the middle of the geodesic between b−

i and b+
i is p′

i and not
pi

Proposition 4.6 states that p̃i := logdi (pi ) is obtained as

p̃i = 0.5(b̃−
i + b̃+

i ). As di = (0, 0), we observe imme-
diately that b+

i = b̃+
i , as well as b−

i = b̃−
i . However,

pi = 0.5(b−
i + b+

i ) does not correspond to the mid-
point p′

i = g(0.5; b−
i , b+

i ) of a (possibly non-minimizing)
geodesic g between b−

i and b+
i . This is due to the shrink-

ing of the metric in the above-mentioned area. Therefore,
the two velocities limε→0

d
dtB(i − ε) = −logpi (b

−
i ) and

limε→0
d
dtB(i + ε) = logpi (b

+
i ) are in general different in

TpiM, which results in the non-differentiability of the curve.
��

On the one hand, the new fitting curve of Definition 4.7
recovers the interpolation property as λ → ∞, but on the
other hand, losing differentiability is a major drawback.

In the next section, we propose a new curve definition,
obtained using a so-called blending process, in order to over-
come this drawback.

5 Fitting with Blended Bézier Curves

We now present a way to construct a differentiable curve
B(t) that satisfies the six properties mentioned in Sect. 1. The
method is also less costly than those of Sect. 4, as it requires
fewer exp and log evaluations to evaluate the curve at a given
parameter value t . We still resort to Bézier curves, but here it
is merely for convenience in order to reuse (29); actually all
the Bézier curve are now computed in (Euclidean) tangent
spaces and are thus nothing else than polynomials expressed
in a specific form.

5.1 Blending Technique

The basic idea of this method is that the control points of the
i th curve of B(t) are computed in the tangent spaces of the
data points di and di+1. A (Euclidean) Bézier curve is com-
puted on each of these tangent spaces and then mapped to the
manifold. These two solutions are finally blended together on
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M, via a carefully chosenweightedmean that will be defined
in a moment. This last step of this sketched algorithm gives
its name to the reconstructed blended spline B. We provide
now a more formal description of this method.

Definition 5.1 (Blended curve). Let dref,1, dref,2 ∈ M be two
different reference points. Consider two sequences of tangent
vectors b̃0, . . . , b̃K ∈ Tdref,1M and b̂0, . . . , b̂K ∈ Tdref,2M
named control vectors. The blended curve βK : [0, 1] → M
of degree K is defined as

βK (t) = av[(L(t), R(t)), (1 − w(t), w(t))], (32)

where

L(t) = expdref,1

(
βK (t; b̃0, . . . , b̃K )

)
(33)

R(t) = expdref,2

(
βK (t; b̂0, . . . , b̂K )

)
(34)

and where w(t) = 3t2 − 2t3.

Remark 5.2 In order to obtain the differentiability property
of Theorem 5.7, the weight function w(t) has to be chosen
such that βK (0) = L(0), βK (1) = R(1), β̇K (0) = L̇(0), and
β̇K (1) = Ṙ(1). This is achieved when w(0) = 0, w(1) = 1,
w′(0) = 0, and w′(1) = 0. Among all functions w that
satisfy these conditions, we opted for the one that minimizes
the mean square second derivative. Remark also that w(t) ∈
[0, 1], for any t ∈ [0, 1].
Proposition 5.3 (Continuity of the blended curve). The
blended curve (Definition 5.1) is well defined and smooth
under the assumptions from the introduction, i.e., that the
exponential and the logarithm map involved are well defined
and smooth. This holds, in particular, if M is complete and
if the distance dM(L(t), R(t)) < r∗(t), where r∗(t) =
max(rR(t), rL(t)), for all t ∈ [0, 1]. Furthermore, it inter-
polates the point b0 = expdref,1(b̃0) and the point bK =
expdref,2(b̂K ).

Proof The first claim is immediate by composition. For the
second claim, as dM(L(t), R(t)) < r∗(t), the weighted
average between L(t) and R(t) never crosses the cut loci
of the points, so that the blended curve is never discontin-
uous. Interpolation is obtained as follows. As w(0) = 0,
βK (0) = av[(L(0), R(0)), (1, 0)] = L(0) = b0, and simi-
larly for βK (1), as w(1) = 1. ��

The natural next step is now to define the notion of com-
posite blended curve.

Definition 5.4 (Composite blended curve). Consider now the
sequence (β i

Ki
)n−1
i=0 of n blended curves. The composite

blended curve B(t) is the curve

B : [0, n] → M, t �→ β i
Ki

(t − i), i = �t�. (35)

Consider now the data points d0, . . . , dn ∈ M corre-
sponding to parameter values ti = i , i = 0, . . . , n, and
the regularization parameter λ > 0. Our objective is now
to define the blended cubic spline B(t) = β i

3(t − i), i = �t�
minimizing (1) when M is flat. To do so, one has to choose
the two reference points and find the control vectors of each
blended curve.

Without loss of generality, consider the i th blended curve
β i
3(t) of B(t). We define its intermediate functions L(t) and
R(t) as

L(t) = expdi

(
βK (t; p̃i , b̃+

i , b̃−
i+1, p̃i+1)

)
(36)

R(t) = expdi+1

(
βK (t; p̂i , b̂+

i , b̂−
i+1, p̂i+1)

)
, (37)

where we have chosen dref,1 = di and dref,2 = di+1.
The control vectors of the Euclidean Bézier curves on

TdiM and Tdi+1M are obtained such that they are cubic
smoothing splines on their respective tangent spaces. In other
words, the control vectors x̃ ∈ { p̃i , b̃+

i , b̃
−
i+1, p̃i+1} (resp.

x̂) correspond to the tangent vectors computed using equa-
tion (29) with dref = di (resp. dref = di+1) on TdiM (resp.
Tdi+1M). Finally, in viewof Proposition 2.6 and theC1 (actu-
ally C2) property of a natural cubic spline, the remaining
control vectors are

p̃i = b̃−
i + b̃+

i

2
, i = 1, . . . , n − 1, (38)

and accordingly for p̂i .
We can now define the blended cubic spline.

Definition 5.5 (Blended cubic spline). For a given value of
the parameter λ > 0, the proposed blended cubic spline
B : [0, n] → M fitting the manifold-valued data points
d0, . . . , dn ∈ M at parameter values t0 = 0, . . . , tn = n,
is defined as

B(t) := β i
3(t − i), i = �t�,

where β i
3(t − i) is as in Definition 5.1. The intermediate

functions L(t) and R(t) of β i
3 are defined by (36) and (37),

and their control vectors are computed on TdiM and Tdi+1M
using (29) and (38).

The whole method is summarized in Algorithms 3 and 4,
and this last algorithm is represented in Fig. 8.

5.2 Properties of the Composite Cubic Blended
Curve

In this section, we analyze the properties of the composite
cubic blended curve.
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Algorithm 3Control points generation for the blended cubic
spline of Definition 5.5.
Require: d0, . . . , dn , λ > 0, A0, A1 and C (Appendix A.2).
Init: s0 = · · · = sn = u0 = · · · = un = 0.
W ← (A0 + λA1)

−1C % matrix of weights
dref,2 = d0.
for j = 0, . . . , n do

u j = logdref,2 (d j )

end for

for i = 0, . . . , n − 1 do
dref,1 ← di % reference points
dref,2 ← di+1
for j = 0, . . . , n do

s j ← u j % mapping to Tdref,�M
u j ← logdref,2 (d j )

end for
for j = 0, . . . , 3 do

x̃ j ← ∑n
k=0 w(2i+ j)ksk % cp generation

x̂ j ← ∑n
k=0 w(2i+ j)kuk

end for

% first point of the segment
if i = 0 then

p̃0 ← x̃0 and p̂0 ← x̂0
else

p̃i ← 0.5(x̃0 + x̃1) % C1-condition
p̂i ← 0.5(x̂0 + x̂1)

end if

% last point of the segment
if i = n − 1 then

p̃n ← x̃3 and p̂n ← x̂3
else

p̃i+1 ← 0.5(x̃2 + x̃3) % C1-condition
p̂i+1 ← 0.5(x̂2 + x̂3)

end if

% inner points of the segment
b̃+
i ← x̃1 and b̂+

i ← x̂1
b̃−
i+1 ← x̃2 and b̂−

i+1 ← x̂2
end for

Algorithm 4 Reconstruction of the C1 blended cubic spline
of Definition 5.5 at time t
Require:
i ∈ {0, . . . , n − 1}, t ∈ [i, i + 1],
( p̃i , b̃

+
i , b̃−

i+1, p̃i+1) ∈ TdiM,

( p̂i , b̂
+
i , b̂−

i+1, p̂i+1) ∈ Tdi+1M

w ← 3t2 − 2t3

x̃ ← β3(t; p̃i , b̃+
i , b̃−

i+1, p̃i+1), x ← expdi (x̃)

ŷ ← β3(t; p̂i , b̂+
i , b̂−

i+1, p̂i+1), y ← expdi+1
(ŷ)

z ← av[(x, y), (1 − w,w)]
return z

Lemma 5.6 Consider the tangent spaces TdiM, i = 1, . . . ,
n − 1 and the control vectors p̂i−1, b̂

+
i−1, b̂

−
i , p̂i = p̃i ,

b̃+
i , b̃

−
i+1, and p̃i+1 obtained by (29) and (38). The curve

γ̃ : [0, 2] → TdiM : t �→ γ̃ (t) given by

M

di
di+1pi

pi+1

L(t) R(t)

B(t)

Tdi
M

p̃i

b̃+i
b̃−
i+1

p̃i+1

Tdi+1M

p̂i

b̂+i

b̂−
i+1

p̂i+1

Fig. 8 Illustration of the reconstruction of the blended cubic spline
(Algorithm4). The points ( p̃i , b̃

+
i , b̃−

i+1, p̃i+1) and ( p̂i , b̂
+
i , b̂−

i+1, p̂i+1)

are computed, respectively, in the tangent space of di and di+1 according
to (29) and (38). The points L(t) and R(t) (black circles) are obtained
as the mapping toM of the Euclidean Bézier curve obtained on TdiM
and Tdi+1M, respectively. Finally, these points are averaged on M via
Eq. (32) to obtain the value of the blended cubic spline B(t) (blue dot)
(Color figure online)

γ̃ (t) =
{

β3(t; p̂i−1, b̂
+
i−1, b̂

−
i , p̂i ) for t ∈ [0, 1]

β3(t − 1; p̃i , b̃+
i , b̃−

i+1, p̃i+1) for t ∈ [1, 2],

is a natural cubic spline on TdiM.

Proof By construction of the control points, the curve γ̃ cor-
responds to two successive pieces of the optimal fitting curve
in the Euclidean space TdiM for the data points logdi (d j ),
j = 0, . . . , n. This optimal fitting curve is known to be a
natural cubic spline; see, e.g., [14]. ��
Theorem 5.7 Consider the data points d0, . . . , dn ∈ M
associated with parameter values ti = i , i = 0, . . . , n. The
blended cubic spline B(t) : [0, n] → M of Definition 5.5
satisfies the following properties:

(i) B(i) → di when λ → ∞, for i = 0, . . . , n;
(ii) B(t) is well defined and smooth under the assumptions

from the introduction, i.e., that the exponential and the
logarithm map well defined and smooth. This holds,
in particular, if M is complete and, on each piece,
dM(L(τ ), R(τ )) < r∗(τ ), r∗(τ ) = max(rR(τ ), rL(τ )),
for all τ ∈ [0, 1].

(iii) whenM is a Euclidean space,B(t) is the cubic smooth-
ing spline that minimizes (1) over the Sobolev space
H2(0, n).

Proof By Proposition 5.3, β i
3(0) = pi and β i

3(1) = pi+1,
for i = 0, . . . , n − 1. Therefore, B(i) = pi . When λ → ∞,
p̃i = 0 ∈ TdiM by (29) and (38), so pi = di ∈ M, and
property (i) is verified ∀i . The proof of property (iii) is direct
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from Lemma 5.6, as Td0R
m = Td1R

m = · · · = TdnR
m . Let

us now prove property (ii). Again by Proposition 5.3,B isC1

on t �= i . There remains to show that B(t) is differentiable
at t = i . For i ∈ {0, n} differentiability is trivial. Let i ∈
{1, . . . , n − 1}. Consider the curve γ̃ (t) of Lemma 5.6 and
γ (t) = expdi (γ̃ (t)). By definition, w′(t) = 0 at t ∈ {0, 1}.
Therefore,

d

dt
B(t)|t=i+ = d

dt
av[(Li (t), Ri (t)), (1 − w(t), w(t))]|t=0+

= d

dt
Li (t)|t=0+ = d

dt
γ (t)|t=1+,

where Ri (t) and Li (t) are the intermediate functions (36)
and (37) of the i th blended curve of B. Similarly,

d

dt
B(t)|t=i− = d

dt
Ri−1(t)|t=1− = d

dt
γ (t)|t=1− .

As expdi (·) is a smooth mapping, γ (t) is differentiable at
t = 1, so B(t) is differentiable at t = i , ∀i . ��
Remark 5.8 Note that the condition of Theorem 5.7, (ii), is
not easy to check in practice. Let us pose L̃(t) and R̂(t), the
smoothing splines computed in TdiM and Tdi+1M, respec-
tively, evaluated at t = s − i , s ∈ [i, i + 1]. Let t be given.
By the triangular inequality, one can say that

dM
(
L(t), R(t)

) ≤ ‖L̃(t)‖ + dM(di , di+1) + ‖R̂(t)‖.

By definition, the smoothing splines read

L̃(t) =
3∑

i=0

n∑
j=0

Bi3(t)Di j d̃ j ,

and accordingly for R̂(t). We pose Δ = maxi j dM(di , d j ).
As Bi3(t) ≥ 0 and

∑3
i=0 Bi3(t) = 1, one has

dM
(
L(t), R(t)

) ≤ (n + 1)max
i j

(Di j )
(
2Δ

) + Δ.

The condition of Theorem 5.7, (ii), is verified if

Δ ≤ r∗(t)
1 + 2(n + 1)maxi j (Di j )

.

Note that this condition can be checked a priori, is sufficient
for arbitrary manifolds with nonzero injectivity radius, but
is by no means necessary. In practice, we observed that the
property (ii) holds true in all experiments we conducted, and
we were not even able to choose the data points maliciously
enough to make it wrong.

Proposition 5.9 (Minimal representation of the curve). The
blended cubic spline of Definition 5.5 is uniquely represented
by 6(n − 1) + 8 tangent vectors.

Proof The curve is represented by the following tangent vec-
tors:

• 4 vectors p̃0, b̃
+
0 , b̃

−
1 , b̃

+
1 ∈ Td0M

• 6 vectors p̃0, b̃
+
0 , b̃

−
1 , b̃

+
1 , b̃

−
2 , b̃

+
2 ∈ Td1M

• 6(n−3) vectors b̃−
i−1, b̃

+
i−1, b̃

−
i , b̃

+
i , b̃

−
i+1, b̃

+
i+1 ∈ TdiM,

for i = 2, . . . , n − 2;
• 6 vectors b̃−

n−2, b̃
+
n−2, b̃

−
n−1, b̃

+
n−1, b̃

−
n , p̃n ∈ Tdn−1M

• 4 vectors b̃−
n−1, b̃

+
n−1, b̃

−
n , p̃n ∈ TdnM.

��
Proposition 5.10 (Exponential and logarithmmaps required).
The number of exponential and logarithm maps required by
the blended cubic spline (Definition 5.5) is

• n(n + 1) logarithms for the construction of the minimal
representation of the curve of Proposition 5.9

• 3 exponential maps and 1 logarithm map to reconstruct
the curve B(t), for a given parameter value t, given that
minimal representation.

Proof The n(n+1) logarithms maps are here again required
for the representation of the data points d j , j �= i , in the
tangent space TdiM. The reconstruction of the curve at a
given value of t requires 2 exponential maps to map on the
manifold the values of the EuclideanBézier curves computed
in the tangent spaces at di and di+1, with i = �t�, and one
additional logarithm and exponential map, to compute the
weighted average of those two values. ��

6 Fitting with Composite Bézier-Like Curves

In this section, we present another approach to fix the dif-
ferentiability problem identified in Proposition 4.11. This
approach is based on the observation that the curve

γ̄i : [0, 2] → M : γ̄i (t) =
{
g(t; b−

i , pi ) for t ∈ [0, 1],
g(t; pi , b+

i ) for t ∈ [1, 2]

(see Fig. 6) is not differentiable at t = 1. This curve, how-
ever, is used at the first step of the De Casteljau algorithm
to reconstruct Bézier curves of B afterward (Definition 2.8).
A natural (but naive) idea to fix this problem would be to
replace these two geodesics (in the De Casteljau algorithm)
by any differentiable curve γi (t) : [0, 2] → M satisfying
γi (0) = b−

i , γi (1) = pi and γi (2) = b+
i (for instance,

γ (t) = expdi (γ̃ (t)) from Lemma 5.6). We explain here why
this approach does not fix the differentiability problem iden-
tified in Proposition 4.11. We discuss also how this approach
can be modified (by replacing the De Casteljau method by a
more general algorithm) in order to obtain C1 fitting curves
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satisfying the interpolation property as λ → ∞. However,
the curve obtained will no longer reduce to a natural cubic
spline in the case M = R

m .
This section relies on the notion of blossom of a recursive

function. Blossoms can be viewed as a manner to general-
ize the De Casteljau algorithm. Indeed, at each step of the
recursion, one can choose a different function and a different
evaluation time, while the De Casteljau algorithm is limited
to performing only geodesics at a given time t . The section
is composed of two parts. We first recall the general theory
and remarkable theorems about blossoms. Then, we present
and analyze two new fitting methods based on that theory.

6.1 Blossom Functions

Blossoms are conceptual mathematical objects that are
described, e.g., in [11,20]. We refer the reader to these docu-
ments for more details and extend here the results to a more
general setting that will be useful for our developments.

Definition 6.1 (Manifold-valued blossom). Consider a set
of points x0, . . . , xK ∈ M, K ∈ N, associated with
parameter values t0, . . . , tK ∈ [0, 1], and a set of smooth
functions fi (·; x, y) : [0, 1] → M, i = 1, . . . , K such that
fi (0; x, y) = x and fi (1; x, y) = y for all i . We will later
refer to such functions as endpoint functions. The associ-
ated recursive function hK (·; x0, . . . , xK ) : [0, 1] → M is
defined as

hi (t; x0, . . . , xi )
= fi

(
t; hi−1(t; x0, . . . , xi−1), hi−1(t; x1, . . . , xi )

)
,

with h0(t; x j ) = x j , j = 0, . . . , K . The notion of blossom
is a generalization of hK , where different values of t can be
used at each step of the recursion. The blossom of hK is thus
the map ψK : RK+1 → M given by

ψi (t0, . . . , ti ; x0, . . . , xi )
= fi

(
ti ;ψi−1(t0, . . . , ti−1; x0, . . . , xi−1),

ψi−1(t0, . . . , ti−1; x1, . . . , xi )
)
, (39)

with ψ0(t0; x j ) = x j for all j . Observe therefore that

ψK (t, . . . , t; x0, . . . , xK ) = hK (t; x0, . . . , xK ). (40)

Example 6.2 (De Casteljau algorithm). One can of course
define a blossom for the Bézier curves of degree K on man-
ifolds, based on the De Casteljau algorithm (Definition 2.2).
In that case, the curve fi (·; x, y) = g(·; x, y) is the geodesic
between x and y, for all i .

Proposition 6.3 (Endpoint interpolation and velocity). For
any set of data points x0, . . . , xK ∈ M, the following prop-
erties hold:

(i) hK (0; x0, . . . , xK ) = x0,
(ii) hK (1; x0, . . . , xK ) = xK ,

(iii) ḣK (0; x0, . . . , xK ) =
K∑
i=1

d

dt

∣∣∣∣
t=0

fi (t; x0, x1),

(iv) ḣK (1; x0, . . . , xK ) =
K∑
i=1

d

dt

∣∣∣∣
t=1

fi (t; xK−1, xK ).

(v) if fi (·; x, y) ∈ C1, hK (·; x0, ·, xK ) ∈ C1 as well.

Proof Properties (i) and (ii) follow directly from the defini-
tion of the functions fi : indeed, one has fi (0; x, y) = x and
fi (1; x, y) = y, for all i . Properties (iii) and (iv) are proven
in a similar way as [29, Theorem 1]. By (40) one has

ḣK (0; x0, . . . , xK )

=
K∑
i=1

∂

∂ti

∣∣∣∣
ti=0

ψK (0, . . . , 0, ti , 0, . . . , 0; x0, . . . , xK ).

As fi (0; x, y) = x for x, y ∈ M, one has, by [29, Lemma 3
(ii)],

ψK (0, . . . , 0, ti , 0, . . . , 0; x0, . . . , xK ) = fi (ti ; x0, x1).

As a result, we obtain

ḣK (0; x0, . . . , xK ) =
K∑
i=1

d

dt

∣∣∣∣
t=0

fi (t; x0, x1).

(iv) is obtained symmetrically. Finally (v): the smoothness
of hK is preserved by composition. ��

6.2 Bézier-Like Fitting Curves

In this section, we propose two modifications of the classical
De Casteljau algorithm (Definition 2.8) in order to produce
a fitting curve for a set of data points d0, . . . , dn associated
with parameters t0 = 0, . . . , tn = n. The underlying idea is
to modify the functions fi used to construct the function hK
from Definition 6.1.

Definition 6.4 (Bezier-like fitting curve type I). Let λ > 0.
For i ∈ {0, . . . , n − 1}, we define p̃i , b̃

+
i ∈ TdiM and b̂−

i+1,
p̂i+1 ∈ Tdi+1M, the vectors computed with (29) and (38) in
their respective tangent spaces. We consider the correspond-
ing points pi , b

+
i , b

−
i+1 and pi+1 ∈ M. The cubic Bézier-like

curve h3(·; pi , b+
i , b−

i+1, pi+1) : [0, 1] → M is recursively
computed, according to Definition 6.1, with the following
endpoint functions:

f1(t; pi , b+
i ) := γi (1 + t),

f1(t; b+
i , b−

i+1) := g(t; b+
i , b−

i+1),
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Fig. 9 Composite Bézier-like curve of type I. The first step of the algo-
rithm is a hybrid method where the first (resp. last) geodesic is replaced
by the curve γi (1 + t) (resp. γi+1(t)). The middle one is still a classi-
cal geodesic between b+

i and b−
i+1. The next steps of the algorithm are

classical weighted averagings

f1(t; b−
i+1, pi+1) := γi+1(t),

fk(t; x, y) := av[(x, y), (1 − w(t), w(t))], k = 2, 3,

where w(t) = 3t2 − 2t3 and γi : [0, 2] → M, γi (t) :=
expdi

(
(2−t)
2 b̃−

i + t
2 b̃

+
i

)
is a straight line on TdiM, mapped

to M. As illustrated in Fig. 6, γ (1) = pi . Observe that, in
a mild abuse of notation, the definition of f1 depends on the
name of its arguments.

The composite cubic Bézier-like curve of type I B(t) is
then defined according to Definition 2.9. This definition is
illustrated in Fig. 9.

Remark 6.5 This definition of Bézier-like curve is directly
related to the interpolation conditions (38) but not restricted
to cubic curves. Indeed, it can be easily generalized to curves
of degree K , where f1(t; pi , b+

i ) and f1(t; b−
i+1, pi+1)

would correspond to the Euclidean operation mapped toM,
while the “other” (endpoint) functions f1(t; x, y) would be
classical geodesics between x and y.

Lemma 6.6 Let x, y ∈ M and w(t) = 3t2 − 2t3. Let z :=
f (t; x, y) = av[(x, y), (1 − w(t), w(t))]. Then

d

dt

∣∣∣∣
t=s

f (t; x, y) = 0, for s ∈ {0, 1}.

Proof The optimality condition of z = f (t; x, y) is given
by [18, Thm 1.2]:

0 = logz(x)(1 − w(t)) + logz(y)w(t) := F(t, z).

By the implicit function theorem, one has

d

dt
f (t; x, y) = − (DzF(t, z))−1 Dt F(t, z),

where Dt F(t, z) = (
logz(y) − logz(x)

)
w′(t). As w′(t) =

6t − 6t2, we see that Dt F(t, z)|t=0 = Dt F(t, z)|t=1 = 0,
and d

dt

∣∣
t=s f (t; x, y) = 0 for s ∈ {0, 1}. ��

Theorem 6.7 Consider the data points d0, . . . , dn ∈ M
associated with parameter values t0 = 0, . . . , tn = n. The
composite cubic Bézier-like curve B(t) of type I (Defini-
tion 6.4) satisfies the following properties:

(i) B(i) → di , when λ → ∞;
(ii) B(t) is differentiable for t ∈ [0, n].

Proof As av[(x, y), (1, 0)] = x and av[(x, y), (0, 1)] = y,
the cubic Bézier-like curves h3 fromDefinition 6.4 are recur-
sive functions as defined in Definition 6.1. Therefore, we can
apply Proposition 6.3 (i–ii). By condition (38), we prove (i)
because p̃i → 0 when λ → ∞, so pi → di . For condi-
tion (ii), let i = 1, . . . , n − 1. B(t) is smooth for t �= i ,
as h3 is smooth (Proposition 6.3 (v)). For t = i , we have
by Lemma 6.6 that d

dt

∣∣
t=s fk(t; x, y) = 0, for s ∈ {0, 1}.

Therefore, by Proposition 6.3 (iii–iv), one has

dB(t)

dt

∣∣∣∣
i−

= dγi (t)

dt

∣∣∣∣
1−

and

dB(t)

dt

∣∣∣∣
i+

= dγi (t)

dt

∣∣∣∣
1+

.

As γi (t) is differentiable, so is B(t). ��
Remark 6.8 In Definition 6.4, one could be tempted to sim-
ply use classical geodesics in place of fk(t; x, y), k = 2, 3.
However, by Proposition 6.3 the left and right velocities of
B at t = i will in general not be the same: indeed, as shown
in Proposition 4.11, b−

i , pi and b−
i are not always aligned.

Proposition 6.9 (Minimal representation of the curve). The
fitting Bézier-like curve of Definition 6.4 is uniquely repre-
sented by 2(n + 1) tangent vectors.

Proof The proof is similar to the one of Proposition 4.9; the
same tangent vectors can be used to represent the curve. ��
Proposition 6.10 (Exponential and logarithmmaps required).
The number of exponential and logarithm maps required by
the fitting Bézier-like curve of Definition 6.4 is

• n(n + 1) logarithms for the construction of the minimal
representation of the curve;
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• 8 exponential maps and 4 logarithm maps to reconstruct
the curve B(t), for a given parameter value t, given that
minimal representation.

Proof The proof is here also similar to the one of Proposi-
tion 4.10. The differences between the two methods is that
two geodesics are spared at the first step of the algorithm. ��

One strength of the method is that differentiability of
the composite curve B (Definition 6.4) at t = i depends
only on the differentiability of γi . The curve γi (t) can
be replaced by any differentiable curve between b−

i and
b+
i and such that γ (0.5) = pi . This property is possible
because d

dt av[(x, y), (1 − w,w)]|t=s = 0, for s ∈ {0, 1}
and w(t) = 3t2 − 2t3. Then, most of the computation of
the pieces of B(t) can be transferred to the tangent spaces
TdiM and Tdi+1M, i = 0, . . . , n − 1. For cubic curves, for
instance, the curve γi : [0, 2] → M can be the mapping to
M of γ̃i (t), composed of two C1-patched quadratic Bézier
curves computed on the tangent space of di , as

γ̃i (t) =
{

β2(t; b̃+
i−1, b̃

−
i , p̃i ) for t ∈ [0, 1]

β2(t − 1; p̃i , b̃+
i , b̃−

i+1) for t ∈ [1, 2], (41)

where x̃ is the point x ∈ M represented in TdiM. The result-
ing curve h3 would thus be an averaging of the two curves
γi (t) and γi+1(t), as represented in Fig. 10.

This leads us to the following definition.

Definition 6.11 (Bézier-like fitting curve type II). Let λ > 0.
For i ∈ {0, . . . , n − 1}, let pi , b+

i , b−
i+1, pi+1 be the control

points computed with (29) and (31), and let x̃ = logdi (x) ∈
TdiM and x̂ = logdi+1

(x) ∈ Tdi+1M, the representation
of these control points in the corresponding tangent spaces.
Let also b̃−

i+1 = logdi (expdi+1
(b̂−

i+1)), i = 0, . . . , n − 1,

and b̂+
i = logdi+1

(expdi (b̃
+
i )), i = 0, . . . , n − 1. The cubic

Bézier-like curve (type II) y(t) : [0, 1] → M is computed
with the following iterative procedure:

x̃ Li := β2(t; p̃i , b̃+
i , b̃−

i+1)

x̂ Ri := β2(t; b̂+
i , b̂−

i+1, p̂i+1)

x Li := expdi (x̃
L
i )

x Ri := expdi+1
(x̂ Ri )

y(t) := av[(x Li , x Ri ), (1 − w(t), w(t))]

where w(t) = 3t2 − 2t3. The composite cubic Bézier-like
curve (type II) B(t) is then defined as (8). This definition is
illustrated in Fig. 10.

Remark 6.12 The exponential and logarithmmap evaluations
represent usually the major part of the computation effort.
Indeed, these maps are not always closed form and might

M

di
di+1

b+i

b−
i+1

Tdi
M

0̃

b̃+i
b̃−
i+1

Tdi+1M

0̂

b̂+i

b̂−
i+1

Fig. 10 Composite Bézier-like curve of type II. The first step of the
algorithm consists in mapping on the manifold the quadratic Bézier
curves computed on the tangent spaces TdiM and Tdi+1M. The value of
the composite Bézier-like curve is then obtained by a classical weighted
averaging of these two points (black circles)

require lengthy iterative procedures to be evaluated (e.g.,
on the space of shapes [19]). A direct way to spare 2n − 2
Exp-Log evaluations is to compute the control points directly
on the dedicated tangent space, to avoid transfers from one
tangent space to another, as in Algorithm 3. The curve will
remain C1 by Properties 6.3, (iii–iv).

Theorem 6.13 Consider the data points d0, . . . , dn ∈ M
associated with parameter values t0 = 0, . . . , tn = n. The
composite cubic Bézier-like curve B(t) of type II (Defini-
tion 6.11) satisfies the following properties:

(i) B(i) → di , when λ → ∞;
(ii) B(t) is differentiable for t ∈ [0, n].

Proof The proof is similar to the proof of Theorem 6.7.
The condition (i) is reached via Proposition 6.3 (i–ii) and
condition (31). Let i = 1, . . . , n − 1. Differentiability
for t �= i is trivial. For t = i , condition (ii) follows
from Lemma 6.6: as γi (t) = expdi (γ̃i (t)) (Eq. (41)) is
differentiable, so is B(t). ��
Proposition 6.14 (Minimal representation of the curve). The
fitting Bézier-like curve of Definition 6.11 is uniquely repre-
sented by 2(n + 1) tangent vectors.

Proof The proof is similar to the one of Proposition 4.9; the
same tangent vectors can be used to represent the curve. ��
Remark 6.15 There is no need to store the tangent vectors
b̃−
i+1 = logdi b

−
i+1 and b̂+

i = logdi+1
b+
i , as they can be

recovered afterward. Indeed, b̃−
i+1 = logdi

(
expdi+1

b̂−
i+1

)
,

and b̂+
i = logdi+1

(
expdi b̃

+
i

)
.
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Proposition 6.16 (Exponential and logarithmmaps required).
The number of exponential and logarithm maps required by
the fitting Bézier-like curve of Definition 6.11 is

• n(n + 1) logarithms for the construction of the minimal
representation of the curve of Proposition 6.14

• 5 exponential maps and 3 logarithm maps to reconstruct
the curve B(t), for a given parameter value t, given that
minimal representation.

Proof The n(n + 1) logarithm maps are required to repre-
sent the data points d j in the tangent space TdiM, j �= i .
At the reconstruction step, 2 exponentials and 2 logarithms
are required to compute b̂+

i and b̃−
i+1, as mentioned in

Remark 6.15. Finally, 2 exponential maps are required to
map x̃ Li and x̂ Ri toM, and the averaging of these two points
costs 1 exponential map and 1 logarithm map. ��
Remark 6.17 A last thing to remark about Definitions 6.4
and 6.11 is that the reconstructed composite cubic Bézier-
like curves no longer reduce to natural cubic splines when
M = R

m . Thiswill be shownnumerically in the next section.

7 Numerical Examples

In this section,we compare the four fittingmethods described
in the paper, that is, the Bézier fitting curve from Defini-
tion 4.7 (Bézier), the blendedfitting curve fromDefinition 5.5
(Blend) and the Bézier-like fitting curves defined in Sect. 6,
i.e., Definitions 6.4 (BL-I) and 6.11 (BL-II). The goals of
the tests we have performed are threefold. The first goal is to
validate numerically some of the target properties from the
introduction. We consider here two such properties: prop-
erty (i) (interpolation of the data as λ → ∞), see Sect. 7.1,
and property (iii) (recovering of the natural cubic spline in the
Euclidean case), see Sect. 7.2. The second goal of this section
is to compare the curves regarding the value of the optimiza-
tion problem (1). This is done in Sect. 7.3, for two different
manifolds: the sphere S

2 and the special orthogonal group
SO(3). Finally, the third and last goal of this section is to
compare the methods on a curve fitting application. For this,
we use the wind field data from [13] (the one we already used
in Sect. 4.3) to illustrate the ability of the differentmethods to
recover some “hidden” data points. This is done in Sect. 7.4.

As a comparison, we also consider the simpler approach
in which the fitting curve is entirely computed in a unique
tangent space TdrefM. One of the drawbacks of this approach
is that the result usually depends on the tangent space cho-
sen. In short, we compute the optimal (Euclidean) smoothing
spline in TdrefM using the control points (29) and the condi-
tion (38), with a unique dref = dmid, where dmid = dn/2 if n
is even, and

dmid = g(0.5, d(n−1)/2, d(n+1)/2)

if n is odd. This (Euclidean) fitting curve is then mapped
back to M. The latter method will be referred to as TS (for
Tangent Space) in our results.

7.1 Validation of Property (i): Interpolation as
� → ∞

We consider the two data sets from Sect. 4.3 (namely, the unit
circle S1 represented in Fig. 5a and the wind field data, lying
on S+(p, q), the manifold of positive semidefinite matrices
of rank q). We compute the different fitting curves for λ →
∞ on these datasets. Similarly to Sect. 4.3, the parameter λ

is set to 108.
The resulting curves are represented in Figs. 11a and 12.

These two figures indicate that all the methods satisfy the
interpolation property, for both datasets. Moreover, Fig. 11a
indicates that all the methods tend to behave in a similar way,
except the reference method TS, which leads to a consider-
ably different curve. This can be explained by the fact that
the data points are spread out on S1. Therefore, the mappings
logdmid

(di ), i = 0, . . . , 4, are in general very distorted repre-
sentations of the data points di ∈ S

1. It can also be observed
in Fig. 12 that the errors for the method TS are larger on
the boundaries of the interval, i.e., in the region in which the
distortions expected from the mapping into the tangent space
TdmidM are the largest.

As a comparison, we computed the optimal solution on
the circle (Opt). Indeed, on that particular manifold, it is
possible to compute the optimal solution to (1). The only
particularity of the circle, with respect to theEuclidean space,
is that two points distant of an angle 2π are equivalent. So,
we can solve the problem (1) in two steps: first, compute
the optimal representative for the angles characterizing the
data, which is a combinatorial problem, and then, compute
the composite Bézier curve in R that fits those values.

By comparing the mean-squared accelerations of the dif-
ferent curves (Bézier: 52.2, Blend: 66.7, BL-I: 56.3, BL-II:
34.2, TS: 71.9, Opt: 17.8), we observe that BL-II performs
surprisingly well. We see that the blended cubic spline per-
forms a bit less good, but as we show in Sect. 7.3, this is
generally not observablewhenworkingwith other (randomly
generated) datasets. Actually, we expect this acceleration to
be due to the choice of the data points, that are in our case
far away from each other. Indeed, this causes here a large
difference between the two blended curves L(t) and R(t),
as represented in Fig. 11b (see, for instance, between the
points at t = 0 and t = 1). This difference highlights here
the importance of the reference points chosen in all proposed
methods. How to tackle this problemwhile keeping the prop-
erties (i–vi) is still an open question.
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Bézier
Blend
BL-I
BL-II
TS

0 1 2 3 4

−2π

−3π
2

−π

− π
2

0

time-parameter t

an
gl

e
ξ
( t

)

Angle of the Bézier-like curve on S
1

Blend
L(t)
R(t)

(b)(a)

Fig. 11 Comparison of the five methods on the counterexample of
Sect. 4.3, on S

1. a The fitting curves are computed for a parameter
value λ = 108, with all presented methods. In accordance with Propo-
sition 4.6, the data points are almost interpolated by all methods. We
see that the method TS can lead to a drastically different curve (pink

dashed). b The blended cubic spline is computed, at each time, as a
weighted average of L(t) and R(t) (see Definition 5.1). The fact that
the two curves are computed on two different tangent spaces results
here in strong differences between them after projection on the mani-
fold (Color figure online)
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Fig. 12 The five reconstruction methods interpolate the data points of
the counterexample on S+(p, q) of Sect. 4.3, when condition (31) is
respected. As a comparison, Fig. 4 shows the situation when condi-
tion (31) is not respected

7.2 Validation of Property (iii): Natural Cubic Splines
in the Euclidean Case

Figure 13 illustrates the curves obtained for a fitting task
(λ = 102), on the bidimensional Euclidean space R

2. We
verify here that the curves reconstructed by the methods
Blend, TS and Bézier are the natural cubic spline, and
that the curves obtained via BL-I and BL-II differ from
the optimal solution. Each component of the data points

di = (di,x , di,y) ∈ R
2, i = 0, . . . , 5, was chosen randomly

as di,x , di,y ∼ N (0, 1).
We know by Theorem 5.7 and Proposition 4.2 that B(t) is

the natural spline B�(t) when it is reconstructed as a blended
cubic spline (Blend), or as a classical Bézier curve (Bézier
and TS), as shown in Fig. 13 (left). Figure 13 (right) shows
us that the curves reconstructed by the methods from Sect. 6
(BL-I and BL-II) are not the natural spline B�(t) and that
their speed and their path differ strongly.

Figure 13 (left) also suggests that allmethodswould return
the same curve position at t = k

2 , k ∈ Z. Indeed, asw(0) = 0,
w(0.5) = 0.5 and w(1) = 1, the curves reconstructed by all
methods are identical there.

7.3 Mean Acceleration of the Curves

We compare here the acceleration of the different curves,
on two manifolds: the sphere S2 and the special orthogonal
group SO(3).

For each manifold, we generated randomly N = 1000
geodesics γk : [0, 1] → M. From these geodesics, we
extracted 6 points xp,k = expγk (p/5)(v), p = 0, . . . , 5,
where v ∈ Tγk (p/5)M is a random vector whose compo-
nents are distributed according to a classical normal law
N (0, 0.12) of mean 0 and standard deviation 0.1. On each
data set (xp,k)5p=0, with k = 1, . . . , N , we built the five fit-
ting curves at 1000 equispaced times t ∈ [0, 5] and evaluated
the acceleration B̈k(t) of each of them using second-order

123



Journal of Mathematical Imaging and Vision

0 2 4

0

0.05

0.1

parameter [t]

‖B
(t

)
−

B
�
( t

)‖

Curve differences on R
2
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Fig. 13 The curves B(t) computed by BL-I and BL-II are different from the optimal curve B�(t) (a) and their speed s(t) then differ from the speed
s�(t) of the optimal curve (b)

manifold-valued finite differences [6, §3.1]:

B̈k(ti ) = logBk (ti )(Bk(ti+1)) + logBk (ti )(Bk(ti−1))

Δτ 2
,

where Δτ = ti − ti−1.
Figure 14a displays, for the sphere S

2, the mean accel-
eration of the curves E[‖B̈(t)‖], estimated by averaging the
results on the N datasets given by

E[‖B̈(t)‖] � 1

N

N∑
k=1

‖B̈k(t)‖.

This figure indicates that the method TS results on average in
a curve with a considerably larger acceleration than the four
other methods.

Figure 14b presents the results of the same tests, but on
the special orthogonal group SO(3). We observe here similar
results as on the sphere.

7.4 Ability to Recover Left Out Data Points

Finally, we compare here the different fitting methods in a
real-life fitting application, namely the wind field application
considered in [13]. We built a training set using one data
point out of three, the two other data points being used for
the validation set. The quotient geometry of the manifold of
fixed-rank positive semidefinite matrices is studied in [24].

For each fitting method considered, we computed the
mean square error in dB between the validation data and
the values taken by the curve, at the corresponding angles:

MSE(B) = 10 log

(∑
i∈IV ‖C(θi ) − B(θi )‖2F∑

i∈IV ‖C(θi )‖2F

)
,

where IV stands for the indices of the points belonging to the
validation set.

This process was repeated for several values of the fitting
parameter λ, and the results are displayed in Fig. 15a. This
figure indicates that the different fitting methods considered
yield comparable results, the methods BL-I and TS being
slightly less accurate than the others.

8 Summary and Further Work

To conclude, we summarize here the differences between
the methods proposed in the paper. We also include in our
discussion the TS method introduced in Sect. 7.

Among all presented methods, only two of them satisfy
the six target properties from the introduction (see Table 1):
the blended cubic spline (Definition 5.1) and the TS method.
All other methods fail to satisfy at least one of the prop-
erties: Bézier curves either may fail to interpolate the data
points when λ → ∞ (Definition 4.1), or loose differentia-
bility (Definition 4.7); BL-I and BL-II validate properties
(i–ii) but no longer reduce to the natural smoothing spline
when M is a Euclidean space. All methods, however, are
based on simple computation. They all meet the properties
(iv–vi) to only require the exponential and logarithm maps
of the manifold (iv), to only need O(n) tangent vectors to
represent the fitting curve (v), and to only need O(1) oper-
ations to reconstruct it (vi). Finally, we have seen in Sect. 7
that TS leads usually to curves with a larger acceleration
than the blended cubic spline, when the manifold is not
flat.

The complexity of the various methods is nearly equiv-
alent with a small advantage to the blended cubic spline.
Indeed, the number of exponential and logarithm maps
needed to generate the tangent vectors representing the curve
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Fig. 14 Average acceleration of the curves, computed on 1000 random datasets, with λ = 100. The blending cubic spline outperforms the methods
BL-I, BL-II and TS. a Mean acceleration on the sphere S2. bMean acceleration on SO(3)
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Fig. 15 Results on the wind field fitting problem (Sect. 4.3). The train-
ing set was made of one point out of three from the dataset [13], while
the validation set is made of all remaining data points. The mean square
error (MSE) is obtained on the training and validation sets, depending
on the value of the regularization parameter λ. All the fitting methods
considered behave similarly on this fitting problem. a The error on the
training set decreases as λ increases (the problem becomes an interpo-
lation problem), while the error on the validation set reaches a constant
level (remaining error, due to the inability of the model to recover the

left out data). b The data have been corrupted as follows: the covariance
matrices of the training set were perturbed by a Gaussian perturbation:
C(θi ) ← C(θi ) + 0.05N (θi ), with N (θi )lm ∼ N (0, 1). This artificial
noise amounts to adding a MSE of about−9 dB on the training set. The
error displayed is computed with respect to the original (non-corrupted)
data. As λ → ∞, the error on the training set reaches a constant level.
(We are interpolating the noisy data.) However, for λ > 1, the error on
the validation set reaches a smaller value, with an optimal denoising
parameter at λ � 100 noise

(a step that can be done once and for all, independently of the
discretization of the curve to reconstruct) is the same for all
methods. The difference stands in the complexity of the eval-
uation of B for a given t and in the number of tangent vectors
to store to represent the curve. The blended cubic spline, even
if it requires to store more tangent vectors to represent the
whole curve, has the advantage to be less consuming in oper-
ations to construct B at a given t . The TS method requires

fewer evaluations of exponential and logarithm maps than
any other, but performs poorly qualitatively, as we can see
in Fig. 11a. The details of the complexity are presented in
Tables 2 and 3.

Therefore, in view of the results presented in Sect. 7,
we can conclude that the blended cubic spline method is a
good tradeoff between accuracy, efficiency and low storage
requirements.
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Table 1 Properties of the
methods

Bézier - Def. 4.1 Bézier - Def. 4.7 Blend BL-I BL-II TS

Interpolation when λ → ∞ ✗ ✓ ✓ ✓ ✓ ✓

Differentiability ✓ ✗ ✓ ✓ ✓ ✓

Natural spline when
M = R

r
✓ ✓ ✓ ✗ ✗ ✓

Only exps and logs ✓ ✓ ✓ ✓ ✓ ✓

Curve encoded by O(n)

tangent vectors
✓ ✓ ✓ ✓ ✓ ✓

Reconstruction by O(1)
exps and logs

✓ ✓ ✓ ✓ ✓ ✓

The blended cubic spline gathers all properties. The TS method introduced in Sect. 7 also satisfies all those
properties, but was shown numerically to return a curve with a larger acceleration when the manifold is curved

Table 2 Number of exponential
and logarithm maps required by
the algorithms, for n + 1 data
points

Computation of the tangent
vectors representing the curve

Reconstruction of the
curve at a given time t

# Exps # Logs # Exps # Logs

Bézier 0 n(n + 1) 10 6

Blend 0 n(n + 1) 3 1

BL-I 0 n(n + 1) 8 4

BL-II 0 n(n + 1) 5 3

TS 0 n(n + 1) 1 0

The blended cubic spline has the second fastest reconstruction algorithm

Table 3 Minimal number of tangent vectors to store to represent the
curve, for n + 1 data points

Tangent vectors required

Bézier 2(n + 1)

Blend 6(n − 1) + 8

BL-I 2(n + 1)

BL-II 2(n + 1)

TS 2(n + 1)

The blended cubic spline requests more memory but compensates with
a reconstruction faster than the others

We now draw some perspectives. A consequence of prop-
erty (iii) is that, if the manifold M reduces to a Euclidean
space and λ → 0, then the solution curve γ converges to the
least-squares linear regression solution. None of the various
methods presented in this paper satisfy the following stronger
version of this property: for any manifold M, when λ → 0,
the solution curves converges to the least-squares geodesic
regression of the data points. How to design an algorithm that
satisfies this stronger property along with properties (i)–(vi)
remains an open problem.

We have observed in Fig. 11b that the blending method
could sometimes behave in an unexpected way, due to the
choice of the reference points dref,1 and dref,2. How to opti-
mally choose these two points also remains an open question.

Apossible solution to avoid suchbehaviorwouldbe to choose
the weight w(t) differently in the blending step.

Acknowledgements The codes developed for this paper use theManopt
toolbox [7]. Special thanks to Benedikt Wirth for the very productive
discussions: several methods presented here were conceived during an
ongoing joint project on Bézier fitting surfaces.

Appendix

A.1 Interpolating Bézier Curves: Coefficient Matrices
for Control Points Generation

The problem (21) on M = R
m is a quadratic function to be

optimized with respect to the n + 1 optimization variables
X = (b+

0 , b−
1 , b−

2 , . . . , b−
n ). The solution of that problem

reduces to m independent linear systems A · Xk = C · Dk ,
where Xk is the vector of the kth component of the points
of X , and Dk is the vector of the kth component of the data
points (di )ni=0. We obtain

∫ i+1

i
‖β̈3(t − i; di , b+

i , b−
i+1, di+1)‖22dt

= 12(−3dib
+
i + 3b+

i b
+
i − 3b+

i b
−
i+1

+3b−
i+1b

−
i+1 − 3b−

i+1di+1 + K ),
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with i = �t�. K gathers the terms that are independent from
the optimization variables. Introducing the differentiability
constraints (16) b+

i = 2pi − b−
i , and β i

3, the i
th segment of

the composite cubic Bézier curve, one has

∂β0
3

∂b+
0

= 6b+
0 − 3b−

1 − 3d0 (42)

∂β0
3

∂b−
1

= −3b+
0 + 6b−

1 − 3d1 (43)

and for i = 1, . . . , n − 1, n ≥ 2

∂β i
3

∂b−
i

= 6b−
i + 3b−

i+1 − 9di (44)

∂β i
3

∂b−
i+1

= 3b−
i + 6b−

i+1 − 6di − 3di+1. (45)

By Definition 2.9, (21) is minimized when these quantities
vanish, which yields the linear system A · X = C · D, for
n ≥ 2 where (in MATLAB indexing)

A(1,1 : 2) = [
6 − 3

]
A(2,1 : 3) = [− 3 12 3

]
A(k,k − 1 : k + 1) = [

3 12 3
]

k = 3, . . . , n

A(n + 1,n : n + 1) = [
3 6

]
.

and

C(1,1) = 3

C(2,2) = 12

C(k,k − 1 : k) = [
6 12

]
k = 3, . . . , n

C(n + 1,n : n + 1) = [
6 3

]
.

The third lines in the definition of A and C only hold for
n > 2. All the other entries are equal to zero.

A.2 Fitting Curves : Coefficient Matrices for Control
Points Generation

The problem (26) on M = R
m is a quadratic function to be

optimized with respect to the 2n + 2 optimization variables
X = (p0, b

+
0 , b−

1 , b+
1 , . . . , b−

n , pn). As in “Appendix A.1,”
the solution of that problem reduces to m independent linear
systems (A0+λA1) · Xk = λC ·Dk . This system depends on
the regularization parameter λ > 0, on X , and on the points
(di )ni=0 in D.

For n ≥ 4, the matrices of coefficients A0, A1 ∈
R

(2n+2)×(2n+2) and C ∈ R
(2n+2)×(n+1) are given by the fol-

lowing sparse matrices.

A0 is given, for i = 2, . . . , n − 2, by

A0(1,1 : 4) = [
24 − 36 6 6

]
A0(2,1 : 4) = [− 36 72 − 36 0

]
A0(3,1 : 6) = [

6 − 36 48 − 24 3 3
]

A0(4,1 : 6) = [
6 0 − 24 48 − 33 3

]
A0(2i + 1,2i − 1 : 2i + 6) = [

3 − 33 48 − 24 3 3
]

A0(2i + 2,2i − 1 : 2i + 6) = [
3 3 − 24 48 − 33 3

]
A0(2n − 1,2n − 3 : 2n + 2) = [

3 − 33 48 − 24 0 6
]

A0(2n,2n − 3 : 2n + 2) = [
3 3 − 24 48 − 36 6

]
A0(2n + 1,2n − 1 : 2n + 2) = [

0 − 36 72 − 36
]

A0(2n + 2,2n − 1 : 2n + 2) = [
6 6 − 36 24

]
.

The coefficients of A1 are

A1(1,1) = λ

A1(2,2) = 0

A1(2i − 1,2i − 1 : 2i) = 1

2

[
λ, λ

]
A1(2n + 1,2n + 1) = 0

A1(2n + 2,2n + 2) = λ,

for i = 2, . . . , n. Finally, the coefficients of C are given, for
i = 2, . . . , n, by

C(1,1) = 2λ

C(2i − 1,i) = λ

C(2i,i) = λ

C(2n + 2,n + 1) = 2λ.

The other entries are equal to zero.

A.3 Elements of Differential Geometry

Tables 4 and 5 give the explicit formulae used to evaluate the
exponential map and the logarithm in this paper. They are
implemented in Manopt [7] as a proper factory.

Table 4 Riemannian operators for Sm−1 extracted from [31]

Sphere Sm−1 : the set of normed vectors of size m.

S
m−1 = {x ∈ R

m : x�x = 1}
TxSm−1 = {v ∈ R

m : x�v = 0}
Inner product 〈v1, v2〉x = v�

1 v2

Distance d(x, y) = arccos(x�y)

Exponential expx (v) = x cos(‖v‖) + v
‖v‖ sin(‖v‖)

Logarithm logx (y) = (Id−xx�)y√
1−(x� y)2

arccos(x�y)
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Table 5 Riemannian operators for SO(m) extracted from [6]

The special orthogonal group SO(m).

SO(m) = {X ∈ R
m×m : X�X = I , det(X) = 1}

TXSO(m) = {H ∈ R
m×m : X�H + H�X = 0}

Inner product 〈H1, H2〉 = trace
(
H�
1 H2

)
Distance d(X , Y ) = ‖ log (

X�Y
) ‖F

Exponential expX (H) = X exp
(
X�H

)
Logarithm logX (Y ) = X log

(
X�Y

)
Note the difference between expX (H), the Riemannian exponential,
and exp(X), the matrix exponential
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