Interpolation on manifolds with B-splines

Pierre-Yves Gousenbourger pierre-yves.gousenbourger@uclouvain.be

20th December 2016

From a set of n + 1 points p_i on a manifold \mathcal{M} associated to nodes $i \in \mathbb{Z}$, we seek a \mathcal{C}^1 function $\mathfrak{B} : \mathbb{R} \to \mathcal{M}$ such that $\mathfrak{B}(i) = p_i$.

To this end, we restrict \mathfrak{B} to a family of manifold-valued piecewise-Bézier curves where the first and last segments are quadratic while the others are cubic (as in [AGSW16]). We then compute the *control points* of \mathfrak{B} by generalizing the Euclidean concept of natural \mathcal{C}^2 -splines.

One of the benefits of this application arise in problems whose solutions $(p_i)_{i=0}^n$ depend on only one parameter and are hard to compute, but are evaluated on a manifold \mathcal{M} . Hence, for a new value of the parameter, instead of solving the complicated problem, one can estimate the solution p^* by interpolating $(p_i)_{i=0}^n$ on \mathcal{M} .

The advantages of this technique are (i) a lower space complexity as the solution curve is represented by a few B ézier control points on the manifold, and (ii) a considerably simpler method that only requires two objects on the manifold: the Riemannian exponential and the Riemannian logarithm.

References

[AGSW16] P.-A. Absil, Pierre-Yves Gousenbourger, Paul Striewski, and Benedikt Wirth. Differentiable piecewise-bzier surfaces on riemannian manifolds. SIAM Journal on Imaging Sciences, 9(4):1788–1828, 2016.