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Abstract. We propose a generalization of classical Euclidean piecewise-
Bézier surfaces to manifolds, and we use this generalization to compute
a C

1-surface interpolating a given set of manifold-valued data points as-
sociated to a regular 2D grid. We then propose an efficient algorithm to
compute the control points defining the surface based on the Euclidean
concept of natural C2-splines and show examples on different manifolds.

Fig. 1: C
1-Bézier spline surface on the Riemannian space of shells interpolating the

red shapes. The Bézier surface (gray shapes) is driven by the control points (green).

1 Introduction

This paper concerns univariate and bivariate manifold-valued interpolation with
emphasis on the latter. Specifically, given data points pij in a manifold M
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associated to nodes (i, j) ∈ Z
2 of a Cartesian grid in R

2, we seek a C1 function
B : R2 → M such that B(i, j) = pij .

Several applications motivate this problem, such as projection-based model
order reduction of a dynamical system depending on few parameters (where M
is a Grassmann manifold) [1] or upsampling of diffusion tensor images (where
M is the manifold of positive definite matrices) [2].

In contrast with the univariate case, multivariate manifold-valued interpo-
lation does not appear much in the literature (see [3] and references therein).
Steinke et al. [4, 5] use a thin-plate-spline technique to produce an interpolation
map between two Riemannian manifolds. We also mention a related technique
for volumetric registration presented in [6]. When M = R

r, on the other hand,
there is a wealth of methods, in particular those based on Bézier splines [7].

In this work, we interpolate the data points by means of C1 piecewise-cubic
Bézier surfaces (see Figure 1 for an example). First, we recall a bivariate exten-
sion [3] of manifold-valued Bézier curves [8, 9, 10]. We also give a condition to
match two Bézier patches C0-continuously and then present a slight modification
of the Bézier surface definition to ensure C1-continuity (Section 2). In Section 3
we provide a technique to generate Bézier control points for interpolation which
is faster than in [3], and we present numerical examples in Section 4.

2 Reminder on piecewise-Bézier curves and surfaces

Bézier curves and surfaces of degree K ∈ N are functions of the form

βK(·; b0, . . . , bK) : [0, 1] → R
r, t 7→

∑K
j=0 bjBjK(t),

βK(·, ·; (bij)i,j=0,...,K) : [0, 1]2 → R
r, (t1, t2) 7→

∑K

i,j=0 bijBiK(t1)BjK(t2),

where BjK(t) =
(
K
j

)
tj(1−t)K−j are Bernstein polynomials. They are parameter-

ized by control points b0, . . . , bK ∈ R
r (resp. (bij)i,j=0,...,K ⊂ R

r) which indicate
the rough shape of the curve or surface and which are interpolated when their
indices are in {0,K}.

Since Bernstein polynomials form a partition of unity, Bézier functions are ac-
tually convex combinations of their control points. Introducing the weighted av-
erage av[(y1, . . . , yn), (w1, . . . , wn)] = argminy

∑n

i=1 wid
2(yi, y) with Euclidean

distance d, an equivalent definition of the functions is

βK(t; b0, . . . , bK) = av[(bi)i=0,...,K , (BiK(t))i=0,...,K ],

βK(t1, t2; (bij)i,j=0,...,K) = av[(bij)i,j=0,...,K , (BiK(t1)BjK(t2))i,j=0,...,K ]. (1)

This definition has the advantage that it generalizes to arbitrary metric spaces.
In particular, this is one way among others to define Bézier functions on a
Riemannian manifold M [3].

Let M be a Riemannian manifold (the special case M = R
r is included). A

piecewise-Bézier curve is defined by patching multiple Bézier curves together as

B : [0,M ] → M, t 7→ βK(t−m; (bmi )i=0,...,K) on [m,m+ 1],



for m ∈ {0, . . . ,M − 1}, and accordingly for surfaces B : [0,M ]×[0, N ] → M.
These piecewise-Bézier curves are continuous if bm−1

K = bm0 , m = 1, . . . ,M − 1.

The surfaces are continuous if bm,n−1
iK = bmn

i0 for all i ∈ {0, . . . ,K} and (m,n) ∈
{0, . . . ,M − 1} × {1, . . . , N − 1}, and accordingly in the other direction [3].

If we additionally desire continuous differentiability, then in Euclidean space
this leads to a set of additional simple constraints on the control points [7]. For
piecewise-Bézier surfaces, if we allow also indices outside {0, . . . ,K} by setting

bmn
−1,j = b

m−1,n
K−1,j , bmn

K+1,j = b
m+1,n
1,j , bmn

j,−1 = b
m,n−1
j,K−1 , bmn

j,K+1 = b
m,n+1
j,1 ,

the C1-conditions become bmn
i0 =

bmn
i,−1

+bmn
i1

2 and bmn
0j =

bmn
−1,j+bmn

1j

2 for all i, j,m, n.
Unfortunately, it turns out that those constraints cannot be generalized to a
Riemannian manifold M without leading to contradictions [3]. Therefore, to
achieve a C1 piecewise Bézier surface in M, one has to slightly alter the defi-
nition of a Bézier surface. Indeed, the Euclidean C1-conditions imply that all
control points bmn

i0 and bmn
0j can be ignored and replaced by the average of their

neighbors. Thus, with I = {−1, 1, 2, . . . ,K − 1,K + 1}, one redefines [3]

βK(t1, t2; (b
mn
ij )i,j=0,...,K) = av

[
(bmn

ij )i,j∈I , (wi(t1)wj(t2))i,j∈I

]
(2)

with weights wi(t) =







1
2B0K(t) if i = −1,

B1K(t) + 1
2B0K(t) if i = 1,

BiK(t) if i = 2, . . . ,K − 2,

BK−1,K(t) + 1
2BKK(t) if i = K − 1,

1
2BKK(t) if i = K + 1.

For C1 piecewise Bézier surfaces in Euclidean space, (2) is equivalent to (1).

3 Efficient control point generation for 1D and 2D piecewise-

cubic Bézier interpolation on manifolds

Consider data points pmn ∈ M, (m,n) ∈ {0, . . . ,M} × {0, . . . , N}, where M
is a connected, smooth, finite-dimensional manifold, and where the points are
not too far from each other so that their weighted averages are well-defined. To
interpolate those with a C1-continuous piecewise-cubic (K = 3) Bézier surface
B : [0,M ]× [0, N ] → M with B(m,n) = pmn, we need to generate appropriate
control points

bmn
ij for m,n ∈ {0, . . . ,M − 1} × {0, . . . , N − 1} and i, j = 1, 2.

Note that in view of (2), only inner control points bmn
ij need to be computed.

Curves. To find an appropriate method, we first consider the Euclidean space
R

r and examine piecewise-Bézier curves. Given points pm in R
r, there exists a



unique C2-interpolating piecewise-cubic Bézier curve B whose second derivative
in normal direction vanishes at the domain boundary [7, §9.3]. As a further
nice characteristic, this piecewise-Bézier curve additionally minimizes the mean

squared acceleration
∫M

0
‖B′′(t)‖2dt among all interpolating curves [7, §9.5].

Consider the B-spline representation of this optimal curve,B =
∑M+1

m=−1αmBm,
with coefficients α−1, . . . , αM+1 ∈ R

r and with Bm = B(· −m) given by

−2 −1 1 2

–1/6
–1/3

2/3

B(t) =







β3(t+ 2; 0, 0, 0, 1
6 ) if t ∈ [−2,−1],

β3(t+ 1; 1
6 ,

1
3 ,

2
3 ,

2
3 ) if t ∈ [−1, 0],

β3(t− 0; 2
3 ,

2
3 ,

1
3 ,

1
6 ) if t ∈ [0, 1],

β3(t− 1; 1
6 , 0, 0, 0) if t ∈ [1, 2],

0 else.

(3)

The constraints B(m) = pm and B
′′(0) = B

′′(M) = 0 result in the linear system

1

6

(
4 1

1
...

...
...

... 1
1 4

)

︸ ︷︷ ︸

=:AM

(
α1

...
αM−1

)

=






p1−
p0

6
p2

...
pM−2

pM−1−
pM

6






︸ ︷︷ ︸

=:PM (p0,...,pM )

,

α0 = p0 ,
αM = pM ,
α−1 = 2α0 − α1 ,

αM+1 = 2αM − αM−1 .

Finally, inserting (3) intoB =
∑M+1

m=−1 αmB(·−m) we see that the Bézier control
points bmj can be computed as

bm0 = pm, bm1 = 2
3αm + 1

3αm+1, bm2 = 1
3αm + 2

3αm+1, bm3 = pm+1 .

Surfaces. Consider now the optimal interpolating piecewise-cubic Bézier sur-
face B, still in R

r. Its B-spline representation is B =
∑M+1

m=−1

∑N+1
n=−1 αmnBmn

with Bmn(t1, t2) = Bm(t1)Bn(t2). Since those basis elements are just ten-
sorised versions of the univariate case, a natural way to find the coefficients
αmn ∈ R

r is to first identify the coefficients of the N + 1 spline curves inter-
polating p0n, . . . , pMn, n = 0, . . . , N , and then interpret those coefficients as
interpolation points for spline curves along the other dimension. In detail, the
problem to solve is now

α̃0n=p0n, α̃Mn=pMn, AM(α̃1n, . . . , α̃M−1,n)
T =PM (p0n, . . . , pMn) ∀n,

α0n= α̃m0, αMn= α̃mN , AN(αm1, . . . , αm,N−1)
T =PN (α̃m0, . . . , α̃mN ) ∀m.

An equivalent method is the following: first, compute intermediate points

p̃mn = P(p,m, n) = PM
m

(
PN
n (p00, . . . , p0N ), . . . , PN

n (pM0, . . . , pMN )
)

(4)

for all (m,n); then, denoting Ā = A−1, the αmn are given by

αmn = A(p̃,m, n) =
M∑

i=1

N∑

j=1

ĀM
miĀ

N
nj p̃ij . (5)



Note that the entries of ĀM and ĀN decay exponentially away from the diagonal.
Choosing a small d ∈ N and allowing a small error, the optimal coefficients are
thus approximated as αmn = ′

∑m+d

i=m−d
′
∑n+d

j=n−d Ā
M
miĀ

N
nj p̃ij , where ′

∑
is a

summation restricted to indices for which the summands are defined.
Finally, the Bézier control points bmn

ij for i, j ∈ {1, 2} are obtained via

bmn
ij = 3−i

3
3−j
3 αmn + 3−i

3
j
3αm,n+1 +

i
3
3−j
3 αm+1,n + i

3
j
3αm+1,n+1.

Manifold setting. To generalize the approach to a Riemannian manifold M,
we observe that the equations stay valid under translations, that is, if we replace
all αmn and pmn by respectively α̂mn = αmn − pref and p̂mn = pmn − pref . In
summary, we compute p̄mn = P(p̂,m, n) and then obtain α̂mn = A(p̄,m, n).

On a Riemannian manifold M, we interpret the Euclidean difference a−pref
as a “projection” of a on the tangent space at pref . Namely, we replace all
differences by logarithms logpref

a. In the computation of α̂mn = logpref
αmn

one should choose pref = pmn as the closest interpolation point. The choice of a
small d now has the advantage that the computation requires only few logarithms
logpref

pm̃ñ which are typically expensive to obtain and form the numerical bot-
tleneck of the approach. At the end, αmn ∈ M is retrieved as αmn = exppmn

α̂mn

and the control points for i, j ∈ {1, 2} as

bmn
ij = av[(αmn, αm,n+1, αm+1,n, αm+1,n+1), (

3−i
3

3−j
3 , 3−i

3
j
3 ,

i
3
3−j
3 , i

3
j
3 )] .

4 Numerical examples

We present here some examples of piecewise-Bézier surfaces computed on the
sphere, the orthogonal group and the space of shells, with d = 1.

Figure 2a shows a result on S
2 where well-known explicit formulas for log-

arithm and exponential map exist [11]. The C1-continuity of the interpolation
ensures that a smooth planar curve induces a smooth curve on the surface spline.
Figure 2b displays a piecewise-cubic Bézier surface in SO(3) interpolating a
random set of rotations (red). Here, too, logarithm and exponential map are
known explicitly, see e. g. [12]. Finally, Figure 1 is an application of the out-
lined method to a more complicated manifold, the space of discrete shells [13].
The Riemannian operators are in this case approximated numerically using the
discrete geodesic calculus as described in [13].
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[9] T. Popiel and L. Noakes. Bézier curves and C2 interpolation in Riemannian manifolds.
J. Approx. Theory, pages 148(2):111–127, 2007.

[10] A Arnould, P.-Y. Gousenbourger, C Samir, P.-A. Absil, and M Canis. Fitting Smooth
Paths on Riemannian Manifolds : Endometrial Surface Reconstruction and Preoperative
MRI-Based Navigation. In F.Nielsen and F.Barbaresco, editors, GSI2015, pages 491–498.
Springer International Publishing, 2015.

[11] Q. Rentmeesters. A gradient method for geodesic data fitting on some symmetric Rieman-
nian manifolds. In Decision and Control and European Control Conference (CDC-ECC),
2011 50th IEEE Conference on, pages 7141–7146, 2011.

[12] Nicolas Boumal and P.-A. Absil. A discrete regression method on manifolds and its appli-
cation to data on SO(n). In IFAC Proceedings Volumes (IFAC-PapersOnline), volume 18,
pages 2284–2289, 2011.
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